7.14.12 problem 12

Internal problem ID [437]
Book : Elementary Differential Equations. By C. Henry Edwards, David E. Penney and David Calvis. 6th edition. 2008
Section : Chapter 3. Power series methods. Section 3.2 (Series solution near ordinary points). Problems at page 216
Problem number : 12
Date solved : Monday, January 27, 2025 at 02:53:38 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} y^{\prime \prime }-x^{2} y^{\prime }-3 y x&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Solution by Maple

Time used: 0.002 (sec). Leaf size: 29

Order:=6; 
dsolve(diff(y(x),x$2)-x^2*diff(y(x),x)-3*x*y(x)=0,y(x),type='series',x=0);
 
\[ y = \left (1+\frac {x^{3}}{2}\right ) y \left (0\right )+\left (x +\frac {1}{3} x^{4}\right ) y^{\prime }\left (0\right )+O\left (x^{6}\right ) \]

Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 28

AsymptoticDSolveValue[D[y[x],{x,2}]-x^2*D[y[x],x]-3*x*y[x]==0,y[x],{x,0,"6"-1}]
 
\[ y(x)\to c_2 \left (\frac {x^4}{3}+x\right )+c_1 \left (\frac {x^3}{2}+1\right ) \]