60.1.167 problem 168

Internal problem ID [10181]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, linear first order
Problem number : 168
Date solved : Monday, January 27, 2025 at 06:31:35 PM
CAS classification : [_rational, _Riccati]

\begin{align*} 3 \left (x^{2}-4\right ) y^{\prime }+y^{2}-y x -3&=0 \end{align*}

Solution by Maple

Time used: 0.011 (sec). Leaf size: 167

dsolve(3*(x^2-4)*diff(y(x),x) + y(x)^2 - x*y(x) - 3=0,y(x), singsol=all)
 
\[ y = -\frac {\left (\left (-2 x -4\right )^{{1}/{3}} \left (x -2\right ) \operatorname {hypergeom}\left (\left [-\frac {1}{6}, \frac {1}{6}\right ], \left [-\frac {1}{3}\right ], -\frac {4}{x -2}\right )+24 \operatorname {hypergeom}\left (\left [\frac {5}{6}, \frac {7}{6}\right ], \left [\frac {7}{3}\right ], -\frac {4}{x -2}\right ) c_{1} \right ) \left (x +2\right )^{2}}{\left (-2 x -4\right )^{{1}/{3}} \left (x -2\right ) \left (x +2\right )^{2} \operatorname {hypergeom}\left (\left [-\frac {1}{6}, \frac {1}{6}\right ], \left [-\frac {1}{3}\right ], -\frac {4}{x -2}\right )+32 \left (x -\frac {5}{4}\right ) \left (x +2\right )^{2} c_{1} \operatorname {hypergeom}\left (\left [\frac {5}{6}, \frac {7}{6}\right ], \left [\frac {7}{3}\right ], -\frac {4}{x -2}\right )+4 \left (\frac {x +2}{x -2}\right )^{{1}/{6}} \left (\left (-2 x -4\right )^{{1}/{3}} \left (x +2\right ) \operatorname {HeunCPrime}\left (0, -\frac {4}{3}, -\frac {1}{3}, 0, \frac {25}{36}, \frac {4}{x +2}\right )+24 \operatorname {HeunCPrime}\left (0, \frac {4}{3}, -\frac {1}{3}, 0, \frac {25}{36}, \frac {4}{x +2}\right ) c_{1} \right ) \left (x -2\right )^{2}} \]

Solution by Mathematica

Time used: 0.415 (sec). Leaf size: 135

DSolve[3*(x^2-4)*D[y[x],x] + y[x]^2 - x*y[x] - 3==0,y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} y(x)\to \frac {-2 c_1 x P_{-\frac {1}{6}}^{\frac {1}{3}}\left (\frac {x}{2}\right )+3 c_1 P_{\frac {5}{6}}^{\frac {1}{3}}\left (\frac {x}{2}\right )-2 x Q_{-\frac {1}{6}}^{\frac {1}{3}}\left (\frac {x}{2}\right )+3 Q_{\frac {5}{6}}^{\frac {1}{3}}\left (\frac {x}{2}\right )}{Q_{-\frac {1}{6}}^{\frac {1}{3}}\left (\frac {x}{2}\right )+c_1 P_{-\frac {1}{6}}^{\frac {1}{3}}\left (\frac {x}{2}\right )} \\ y(x)\to \frac {3 P_{\frac {5}{6}}^{\frac {1}{3}}\left (\frac {x}{2}\right )}{P_{-\frac {1}{6}}^{\frac {1}{3}}\left (\frac {x}{2}\right )}-2 x \\ \end{align*}