59.1.653 problem 670

Internal problem ID [9825]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 670
Date solved : Wednesday, March 05, 2025 at 07:59:31 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} 4 x y^{\prime \prime }-x y^{\prime }+2 y&=0 \end{align*}

Maple. Time used: 0.006 (sec). Leaf size: 33
ode:=4*x*diff(diff(y(x),x),x)-x*diff(y(x),x)+2*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {x c_{2} \left (x -8\right ) \operatorname {Ei}_{1}\left (-\frac {x}{4}\right )}{16}+\frac {c_{2} \left (x -4\right ) {\mathrm e}^{\frac {x}{4}}}{4}+c_{1} x \left (x -8\right ) \]
Mathematica. Time used: 0.194 (sec). Leaf size: 42
ode=4*x*D[y[x],{x,2}]-x*D[y[x],x]+2*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to (x-8) x \left (c_2 \int _1^x\frac {e^{\frac {K[1]}{4}}}{(K[1]-8)^2 K[1]^2}dK[1]+c_1\right ) \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x*Derivative(y(x), x) + 4*x*Derivative(y(x), (x, 2)) + 2*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
False