59.1.669 problem 686

Internal problem ID [9841]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 686
Date solved : Wednesday, March 05, 2025 at 07:59:49 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} x^{2} y^{\prime \prime }-x^{2} y^{\prime }-2 y&=0 \end{align*}

Maple. Time used: 0.022 (sec). Leaf size: 21
ode:=x^2*diff(diff(y(x),x),x)-x^2*diff(y(x),x)-2*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {c_{2} \left (x -2\right ) {\mathrm e}^{x}+c_{1} \left (x +2\right )}{x} \]
Mathematica. Time used: 0.075 (sec). Leaf size: 74
ode=x^2*D[y[x],{x,2}]-x^2*D[y[x],x]-2*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to -\frac {2 e^{\frac {x+1}{2}} \left ((c_1 x+2 i c_2) \cosh \left (\frac {x}{2}\right )-(i c_2 x+2 c_1) \sinh \left (\frac {x}{2}\right )\right )}{\sqrt {\pi } \sqrt {-i x} \sqrt {x}} \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x**2*Derivative(y(x), x) + x**2*Derivative(y(x), (x, 2)) - 2*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
False