60.1.215 problem 216

Internal problem ID [10229]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, linear first order
Problem number : 216
Date solved : Monday, January 27, 2025 at 06:40:24 PM
CAS classification : [[_homogeneous, `class C`], _rational, [_Abel, `2nd type`, `class A`]]

\begin{align*} \left (y-2 x +1\right ) y^{\prime }+y+x&=0 \end{align*}

Solution by Maple

Time used: 0.359 (sec). Leaf size: 61

dsolve((y(x)-2*x+1)*diff(y(x),x)+y(x)+x=0,y(x), singsol=all)
 
\[ y = \frac {\sqrt {3}\, \tan \left (\operatorname {RootOf}\left (\sqrt {3}\, \ln \left (3\right )-2 \sqrt {3}\, \ln \left (2\right )+\sqrt {3}\, \ln \left (\sec \left (\textit {\_Z} \right )^{2} \left (3 x -1\right )^{2}\right )+2 \sqrt {3}\, c_{1} +6 \textit {\_Z} \right )\right ) \left (-3 x +1\right )}{6}+\frac {x}{2}-\frac {1}{2} \]

Solution by Mathematica

Time used: 0.099 (sec). Leaf size: 82

DSolve[(y[x]-2*x+1)*D[y[x],x]+y[x]+x==0,y[x],x,IncludeSingularSolutions -> True]
 
\[ \text {Solve}\left [6 \sqrt {3} \arctan \left (\frac {3 y(x)+1}{\sqrt {3} (-y(x)+2 x-1)}\right )=3 \log \left (\frac {3 x^2+3 y(x)^2-3 (x-1) y(x)-3 x+1}{(1-3 x)^2}\right )+6 \log (3 x-1)+2 c_1,y(x)\right ] \]