Internal
problem
ID
[9856]
Book
:
Collection
of
Kovacic
problems
Section
:
section
1
Problem
number
:
701
Date
solved
:
Wednesday, March 05, 2025 at 08:00:02 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=(4*x^3-14*x^2-2*x)*diff(diff(y(x),x),x)-(6*x^2-7*x+1)*diff(y(x),x)+(6*x-1)*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=(4*x^3-14*x^2-2*x)*D[y[x],{x,2}]-(6*x^2-7*x+1)*D[y[x],x]+(6*x-1)*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq((6*x - 1)*y(x) - (6*x**2 - 7*x + 1)*Derivative(y(x), x) + (4*x**3 - 14*x**2 - 2*x)*Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False