59.1.687 problem 704

Internal problem ID [9859]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 704
Date solved : Wednesday, March 05, 2025 at 08:00:04 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} x^{2} \left (1-4 x \right ) y^{\prime \prime }+\left (-\frac {1}{4} x -x^{2}\right ) y^{\prime }-\frac {5 x y}{16}&=0 \end{align*}

Maple. Time used: 0.010 (sec). Leaf size: 55
ode:=x^2*(1-4*x)*diff(diff(y(x),x),x)+(-1/4*x-x^2)*diff(y(x),x)-5/16*x*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = -\frac {2^{{1}/{4}} \left (c_{1} \sqrt {2}\, \left (x -\frac {\sqrt {1-4 x}}{2}-\frac {1}{2}\right ) \sqrt {1+\sqrt {1-4 x}}-2 c_{2} x^{{5}/{4}}\right )}{\left (1+\sqrt {1-4 x}\right )^{{5}/{4}}} \]
Mathematica. Time used: 4.189 (sec). Leaf size: 129
ode=x^2*(1-4*x)*D[y[x],{x,2}]+((1-(5/4))*x-(6-4*(5/4))*x^2)*D[y[x],x]+(5/4)*(1-(5/4))*x*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \frac {\sqrt [4]{4 x-1} \left (5 c_1 \left (\sqrt {4 x-1}-i\right )^{5/4}+i c_2 \left (\sqrt {4 x-1}+i\right )^{5/4}\right ) \exp \left (-\frac {1}{2} \int _1^x\left (\frac {2}{4 K[1]-1}-\frac {1}{4 K[1]}\right )dK[1]\right )}{5 \sqrt [8]{\sqrt {4 x-1}-i} \sqrt [8]{\sqrt {4 x-1}+i}} \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**2*(1 - 4*x)*Derivative(y(x), (x, 2)) - 5*x*y(x)/16 + (-x**2 - x/4)*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
False