Internal
problem
ID
[9887]
Book
:
Collection
of
Kovacic
problems
Section
:
section
1
Problem
number
:
732
Date
solved
:
Wednesday, March 05, 2025 at 08:00:28 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=(x^2+2*x)*diff(diff(y(x),x),x)-2*(1+x)*diff(y(x),x)+2*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=(x^2+2*x)*D[y[x],{x,2}]-2*(x+1)*D[y[x],x]+2*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq((-2*x - 2)*Derivative(y(x), x) + (x**2 + 2*x)*Derivative(y(x), (x, 2)) + 2*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False