60.1.262 problem 263

Internal problem ID [10276]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, linear first order
Problem number : 263
Date solved : Monday, January 27, 2025 at 06:43:22 PM
CAS classification : [_rational, _Bernoulli]

\begin{align*} 2 x^{3}+y^{\prime } y+3 x^{2} y^{2}+7&=0 \end{align*}

Solution by Maple

Time used: 0.056 (sec). Leaf size: 169

dsolve(2*x^3+y(x)*diff(y(x),x)+3*x^2*y(x)^2+7=0,y(x), singsol=all)
 
\begin{align*} y &= -\frac {2^{{5}/{6}} \sqrt {3}\, \sqrt {-80 \left (-x^{3}\right )^{{1}/{3}} \left (\frac {9 \left (-\frac {3 \,{\mathrm e}^{-2 x^{3}} c_{1}}{2}+x \right ) 2^{{1}/{3}} \Gamma \left (\frac {2}{3}\right ) \left (-x^{3}\right )^{{1}/{3}}}{40}+{\mathrm e}^{-2 x^{3}} x \left (\pi \sqrt {3}-\frac {3 \Gamma \left (\frac {1}{3}, -2 x^{3}\right ) \Gamma \left (\frac {2}{3}\right )}{2}\right )\right )}}{18 \sqrt {\Gamma \left (\frac {2}{3}\right )}\, \left (-x^{3}\right )^{{1}/{3}}} \\ y &= \frac {2^{{5}/{6}} \sqrt {3}\, \sqrt {-80 \left (-x^{3}\right )^{{1}/{3}} \left (\frac {9 \left (-\frac {3 \,{\mathrm e}^{-2 x^{3}} c_{1}}{2}+x \right ) 2^{{1}/{3}} \Gamma \left (\frac {2}{3}\right ) \left (-x^{3}\right )^{{1}/{3}}}{40}+{\mathrm e}^{-2 x^{3}} x \left (\pi \sqrt {3}-\frac {3 \Gamma \left (\frac {1}{3}, -2 x^{3}\right ) \Gamma \left (\frac {2}{3}\right )}{2}\right )\right )}}{18 \sqrt {\Gamma \left (\frac {2}{3}\right )}\, \left (-x^{3}\right )^{{1}/{3}}} \\ \end{align*}

Solution by Mathematica

Time used: 4.857 (sec). Leaf size: 166

DSolve[2*x^3+y[x]*D[y[x],x]+3*x^2*y[x]^2+7==0,y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} y(x)\to -\frac {\sqrt {\frac {e^{-2 x^3} \left (-7\ 2^{2/3} \left (-x^3\right )^{2/3} \Gamma \left (\frac {1}{3},-2 x^3\right )+2^{2/3} \left (-x^3\right )^{2/3} \Gamma \left (\frac {4}{3},-2 x^3\right )+3 c_1 x^2\right )}{x^2}}}{\sqrt {3}} \\ y(x)\to \frac {\sqrt {\frac {e^{-2 x^3} \left (-7\ 2^{2/3} \left (-x^3\right )^{2/3} \Gamma \left (\frac {1}{3},-2 x^3\right )+2^{2/3} \left (-x^3\right )^{2/3} \Gamma \left (\frac {4}{3},-2 x^3\right )+3 c_1 x^2\right )}{x^2}}}{\sqrt {3}} \\ \end{align*}