Internal
problem
ID
[10295]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
1,
linear
first
order
Problem
number
:
282
Date
solved
:
Monday, January 27, 2025 at 06:50:58 PM
CAS
classification
:
[[_homogeneous, `class C`], _rational]
\begin{align*} \left (y+3 x -1\right )^{2} y^{\prime }-\left (2 y-1\right ) \left (4 y+6 x -3\right )&=0 \end{align*}
Time used: 0.274 (sec). Leaf size: 75
\[
-4 \ln \left (2\right )-3 \ln \left (\frac {-y+3 x}{6 x -1}\right )-\ln \left (\frac {-3 y+2-3 x}{6 x -1}\right )+3 \ln \left (\frac {-2 y+1}{6 x -1}\right )-\ln \left (6 x -1\right )-c_{1} = 0
\]
Time used: 60.201 (sec). Leaf size: 1089
\begin{align*}
y(x)\to \frac {1}{6} \left (-\sqrt {36 x^2-12 x+16 e^{c_1} (6 x-1)+3\ 2^{2/3} \sqrt [3]{-e^{c_1} (6 x-1)^4 \left (6 x-1+e^{c_1}\right )}+1+16 e^{2 c_1}}-\frac {1}{2} \sqrt {-\frac {8 \left (-(6 x-1)^3+96 e^{2 c_1} (6 x-1)+30 e^{c_1} (1-6 x)^2+64 e^{3 c_1}\right )}{\sqrt {36 x^2-12 x+16 e^{c_1} (6 x-1)+3\ 2^{2/3} \sqrt [3]{-e^{c_1} (6 x-1)^4 \left (6 x-1+e^{c_1}\right )}+1+16 e^{2 c_1}}}+8 \left (12 x+1+4 e^{c_1}\right ){}^2-96 \left (3 x (3 x+1)+2 e^{c_1}\right )-12\ 2^{2/3} \sqrt [3]{-e^{c_1} (6 x-1)^4 \left (6 x-1+e^{c_1}\right )}}+12 x+1+4 e^{c_1}\right ) \\
y(x)\to \frac {1}{6} \left (-\sqrt {36 x^2-12 x+16 e^{c_1} (6 x-1)+3\ 2^{2/3} \sqrt [3]{-e^{c_1} (6 x-1)^4 \left (6 x-1+e^{c_1}\right )}+1+16 e^{2 c_1}}+\frac {1}{2} \sqrt {-\frac {8 \left (-(6 x-1)^3+96 e^{2 c_1} (6 x-1)+30 e^{c_1} (1-6 x)^2+64 e^{3 c_1}\right )}{\sqrt {36 x^2-12 x+16 e^{c_1} (6 x-1)+3\ 2^{2/3} \sqrt [3]{-e^{c_1} (6 x-1)^4 \left (6 x-1+e^{c_1}\right )}+1+16 e^{2 c_1}}}+8 \left (12 x+1+4 e^{c_1}\right ){}^2-96 \left (3 x (3 x+1)+2 e^{c_1}\right )-12\ 2^{2/3} \sqrt [3]{-e^{c_1} (6 x-1)^4 \left (6 x-1+e^{c_1}\right )}}+12 x+1+4 e^{c_1}\right ) \\
y(x)\to \frac {1}{6} \left (\sqrt {36 x^2-12 x+16 e^{c_1} (6 x-1)+3\ 2^{2/3} \sqrt [3]{-e^{c_1} (6 x-1)^4 \left (6 x-1+e^{c_1}\right )}+1+16 e^{2 c_1}}-\frac {1}{2} \sqrt {\frac {8 \left (-(6 x-1)^3+96 e^{2 c_1} (6 x-1)+30 e^{c_1} (1-6 x)^2+64 e^{3 c_1}\right )}{\sqrt {36 x^2-12 x+16 e^{c_1} (6 x-1)+3\ 2^{2/3} \sqrt [3]{-e^{c_1} (6 x-1)^4 \left (6 x-1+e^{c_1}\right )}+1+16 e^{2 c_1}}}+8 \left (12 x+1+4 e^{c_1}\right ){}^2-96 \left (3 x (3 x+1)+2 e^{c_1}\right )-12\ 2^{2/3} \sqrt [3]{-e^{c_1} (6 x-1)^4 \left (6 x-1+e^{c_1}\right )}}+12 x+1+4 e^{c_1}\right ) \\
y(x)\to \frac {1}{6} \left (\sqrt {36 x^2-12 x+16 e^{c_1} (6 x-1)+3\ 2^{2/3} \sqrt [3]{-e^{c_1} (6 x-1)^4 \left (6 x-1+e^{c_1}\right )}+1+16 e^{2 c_1}}+\frac {1}{2} \sqrt {\frac {8 \left (-(6 x-1)^3+96 e^{2 c_1} (6 x-1)+30 e^{c_1} (1-6 x)^2+64 e^{3 c_1}\right )}{\sqrt {36 x^2-12 x+16 e^{c_1} (6 x-1)+3\ 2^{2/3} \sqrt [3]{-e^{c_1} (6 x-1)^4 \left (6 x-1+e^{c_1}\right )}+1+16 e^{2 c_1}}}+8 \left (12 x+1+4 e^{c_1}\right ){}^2-96 \left (3 x (3 x+1)+2 e^{c_1}\right )-12\ 2^{2/3} \sqrt [3]{-e^{c_1} (6 x-1)^4 \left (6 x-1+e^{c_1}\right )}}+12 x+1+4 e^{c_1}\right ) \\
\end{align*}