59.1.743 problem 763

Internal problem ID [9915]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 763
Date solved : Wednesday, March 05, 2025 at 08:00:51 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} \left (x +2\right ) y^{\prime \prime }+x y^{\prime }-y&=0 \end{align*}

Maple. Time used: 0.005 (sec). Leaf size: 17
ode:=(x+2)*diff(diff(y(x),x),x)+x*diff(y(x),x)-y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = c_{1} x +c_{2} {\mathrm e}^{-x} \left (x +4\right ) \]
Mathematica. Time used: 0.334 (sec). Leaf size: 96
ode=(x+2)*D[y[x],{x,2}]+x*D[y[x],x]-y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \frac {2 i \left ((c_1 (x+2)+2 i c_2) \cosh \left (\frac {x+2}{2}\right )-(i c_2 (x+2)+2 c_1) \sinh \left (\frac {x+2}{2}\right )\right ) \exp \left (\int _1^x\frac {1-K[1]}{2 K[1]+4}dK[1]\right )}{\sqrt {\pi } (-i (x+2))^{3/2}} \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*Derivative(y(x), x) + (x + 2)*Derivative(y(x), (x, 2)) - y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
False