60.1.292 problem 293
Internal
problem
ID
[10306]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
1,
linear
first
order
Problem
number
:
293
Date
solved
:
Monday, January 27, 2025 at 07:05:54 PM
CAS
classification
:
[[_homogeneous, `class G`], _rational]
\begin{align*} x \left (y^{2}-3 x \right ) y^{\prime }+2 y^{3}-5 y x&=0 \end{align*}
✓ Solution by Maple
Time used: 0.098 (sec). Leaf size: 35
dsolve(x*(y(x)^2-3*x)*diff(y(x),x)+2*y(x)^3-5*x*y(x)=0,y(x), singsol=all)
\[
\ln \left (x \right )-c_{1} -\frac {2 \ln \left (\frac {5 y^{2}-13 x}{x}\right )}{65}+\frac {6 \ln \left (\frac {y}{\sqrt {x}}\right )}{13} = 0
\]
✓ Solution by Mathematica
Time used: 6.613 (sec). Leaf size: 661
DSolve[x*(y[x]^2-3*x)*D[y[x],x]+2*y[x]^3-5*x*y[x]==0,y[x],x,IncludeSingularSolutions -> True]
\begin{align*}
y(x)\to \text {Root}\left [-\text {$\#$1}^{15}-\frac {25 \text {$\#$1}^2 e^{\frac {65 c_1}{2}}}{x^{26}}+\frac {65 e^{\frac {65 c_1}{2}}}{x^{25}}\&,1\right ] \\
y(x)\to \text {Root}\left [-\text {$\#$1}^{15}-\frac {25 \text {$\#$1}^2 e^{\frac {65 c_1}{2}}}{x^{26}}+\frac {65 e^{\frac {65 c_1}{2}}}{x^{25}}\&,2\right ] \\
y(x)\to \text {Root}\left [-\text {$\#$1}^{15}-\frac {25 \text {$\#$1}^2 e^{\frac {65 c_1}{2}}}{x^{26}}+\frac {65 e^{\frac {65 c_1}{2}}}{x^{25}}\&,3\right ] \\
y(x)\to \text {Root}\left [-\text {$\#$1}^{15}-\frac {25 \text {$\#$1}^2 e^{\frac {65 c_1}{2}}}{x^{26}}+\frac {65 e^{\frac {65 c_1}{2}}}{x^{25}}\&,4\right ] \\
y(x)\to \text {Root}\left [-\text {$\#$1}^{15}-\frac {25 \text {$\#$1}^2 e^{\frac {65 c_1}{2}}}{x^{26}}+\frac {65 e^{\frac {65 c_1}{2}}}{x^{25}}\&,5\right ] \\
y(x)\to \text {Root}\left [-\text {$\#$1}^{15}-\frac {25 \text {$\#$1}^2 e^{\frac {65 c_1}{2}}}{x^{26}}+\frac {65 e^{\frac {65 c_1}{2}}}{x^{25}}\&,6\right ] \\
y(x)\to \text {Root}\left [-\text {$\#$1}^{15}-\frac {25 \text {$\#$1}^2 e^{\frac {65 c_1}{2}}}{x^{26}}+\frac {65 e^{\frac {65 c_1}{2}}}{x^{25}}\&,7\right ] \\
y(x)\to \text {Root}\left [-\text {$\#$1}^{15}-\frac {25 \text {$\#$1}^2 e^{\frac {65 c_1}{2}}}{x^{26}}+\frac {65 e^{\frac {65 c_1}{2}}}{x^{25}}\&,8\right ] \\
y(x)\to \text {Root}\left [-\text {$\#$1}^{15}-\frac {25 \text {$\#$1}^2 e^{\frac {65 c_1}{2}}}{x^{26}}+\frac {65 e^{\frac {65 c_1}{2}}}{x^{25}}\&,9\right ] \\
y(x)\to \text {Root}\left [-\text {$\#$1}^{15}-\frac {25 \text {$\#$1}^2 e^{\frac {65 c_1}{2}}}{x^{26}}+\frac {65 e^{\frac {65 c_1}{2}}}{x^{25}}\&,10\right ] \\
y(x)\to \text {Root}\left [-\text {$\#$1}^{15}-\frac {25 \text {$\#$1}^2 e^{\frac {65 c_1}{2}}}{x^{26}}+\frac {65 e^{\frac {65 c_1}{2}}}{x^{25}}\&,11\right ] \\
y(x)\to \text {Root}\left [-\text {$\#$1}^{15}-\frac {25 \text {$\#$1}^2 e^{\frac {65 c_1}{2}}}{x^{26}}+\frac {65 e^{\frac {65 c_1}{2}}}{x^{25}}\&,12\right ] \\
y(x)\to \text {Root}\left [-\text {$\#$1}^{15}-\frac {25 \text {$\#$1}^2 e^{\frac {65 c_1}{2}}}{x^{26}}+\frac {65 e^{\frac {65 c_1}{2}}}{x^{25}}\&,13\right ] \\
y(x)\to \text {Root}\left [-\text {$\#$1}^{15}-\frac {25 \text {$\#$1}^2 e^{\frac {65 c_1}{2}}}{x^{26}}+\frac {65 e^{\frac {65 c_1}{2}}}{x^{25}}\&,14\right ] \\
y(x)\to \text {Root}\left [-\text {$\#$1}^{15}-\frac {25 \text {$\#$1}^2 e^{\frac {65 c_1}{2}}}{x^{26}}+\frac {65 e^{\frac {65 c_1}{2}}}{x^{25}}\&,15\right ] \\
\end{align*}