60.1.297 problem 298

Internal problem ID [10311]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, linear first order
Problem number : 298
Date solved : Monday, January 27, 2025 at 07:07:56 PM
CAS classification : [[_homogeneous, `class G`], _exact, _rational, _Bernoulli]

\begin{align*} 3 x y^{2} y^{\prime }+y^{3}-2 x&=0 \end{align*}

Solution by Maple

Time used: 0.005 (sec). Leaf size: 71

dsolve(3*x*y(x)^2*diff(y(x),x)+y(x)^3-2*x=0,y(x), singsol=all)
 
\begin{align*} y &= \frac {{\left (\left (x^{2}+c_{1} \right ) x^{2}\right )}^{{1}/{3}}}{x} \\ y &= -\frac {{\left (\left (x^{2}+c_{1} \right ) x^{2}\right )}^{{1}/{3}} \left (1+i \sqrt {3}\right )}{2 x} \\ y &= \frac {{\left (\left (x^{2}+c_{1} \right ) x^{2}\right )}^{{1}/{3}} \left (i \sqrt {3}-1\right )}{2 x} \\ \end{align*}

Solution by Mathematica

Time used: 0.221 (sec). Leaf size: 72

DSolve[3*x*y[x]^2*D[y[x],x]+y[x]^3-2*x==0,y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} y(x)\to \frac {\sqrt [3]{x^2+c_1}}{\sqrt [3]{x}} \\ y(x)\to -\frac {\sqrt [3]{-1} \sqrt [3]{x^2+c_1}}{\sqrt [3]{x}} \\ y(x)\to \frac {(-1)^{2/3} \sqrt [3]{x^2+c_1}}{\sqrt [3]{x}} \\ \end{align*}