Internal
problem
ID
[10319]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
1,
linear
first
order
Problem
number
:
306
Date
solved
:
Monday, January 27, 2025 at 07:08:20 PM
CAS
classification
:
[[_homogeneous, `class A`], _rational, _dAlembert]
Time used: 0.909 (sec). Leaf size: 381
\begin{align*}
y &= \frac {x}{\left (x^{3} c_{1} \left (-c_{1} x^{3}+\sqrt {c_{1}^{2} x^{6}+1}\right )\right )^{{1}/{3}}} \\
y &= \frac {x}{{\left (-\left (c_{1} x^{3}+\sqrt {c_{1}^{2} x^{6}+1}\right ) c_{1} x^{3}\right )}^{{1}/{3}}} \\
y &= \frac {4 x}{\left (1+i \sqrt {3}\right )^{2} \left (x^{3} c_{1} \left (-c_{1} x^{3}+\sqrt {c_{1}^{2} x^{6}+1}\right )\right )^{{1}/{3}}} \\
y &= \frac {4 x}{\left (i \sqrt {3}-1\right )^{2} \left (x^{3} c_{1} \left (-c_{1} x^{3}+\sqrt {c_{1}^{2} x^{6}+1}\right )\right )^{{1}/{3}}} \\
y &= \frac {4 x}{\left (i \sqrt {3}-1\right )^{2} \left (x^{3} c_{1} \left (-c_{1} x^{3}+\sqrt {c_{1}^{2} x^{6}+1}\right )\right )^{{1}/{3}}} \\
y &= \frac {4 x}{\left (1+i \sqrt {3}\right )^{2} \left (x^{3} c_{1} \left (-c_{1} x^{3}+\sqrt {c_{1}^{2} x^{6}+1}\right )\right )^{{1}/{3}}} \\
y &= \frac {4 x}{\left (1+i \sqrt {3}\right )^{2} {\left (-\left (c_{1} x^{3}+\sqrt {c_{1}^{2} x^{6}+1}\right ) c_{1} x^{3}\right )}^{{1}/{3}}} \\
y &= \frac {4 x}{\left (i \sqrt {3}-1\right )^{2} {\left (-\left (c_{1} x^{3}+\sqrt {c_{1}^{2} x^{6}+1}\right ) c_{1} x^{3}\right )}^{{1}/{3}}} \\
y &= \frac {4 x}{\left (i \sqrt {3}-1\right )^{2} {\left (-\left (c_{1} x^{3}+\sqrt {c_{1}^{2} x^{6}+1}\right ) c_{1} x^{3}\right )}^{{1}/{3}}} \\
y &= \frac {4 x}{\left (1+i \sqrt {3}\right )^{2} {\left (-\left (c_{1} x^{3}+\sqrt {c_{1}^{2} x^{6}+1}\right ) c_{1} x^{3}\right )}^{{1}/{3}}} \\
\end{align*}
Time used: 0.113 (sec). Leaf size: 48
\[
\text {Solve}\left [\int _1^{\frac {y(x)}{x}}\frac {(K[1]-1) \left (K[1]^2+K[1]+1\right )}{K[1] \left (K[1]^3-2\right )}dK[1]=-\log (x)+c_1,y(x)\right ]
\]