Internal
problem
ID
[10335]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
1,
linear
first
order
Problem
number
:
322
Date
solved
:
Monday, January 27, 2025 at 07:13:21 PM
CAS
classification
:
[_exact, _rational, [_1st_order, `_with_symmetry_[F(x)*G(y),0]`]]
\begin{align*} \left (10 x^{2} y^{3}-3 y^{2}-2\right ) y^{\prime }+5 x y^{4}+x&=0 \end{align*}
Time used: 0.004 (sec). Leaf size: 29
Time used: 60.252 (sec). Leaf size: 2097
\begin{align*}
y(x)\to -\frac {\sqrt {3} x^2 \sqrt {\frac {5 \sqrt [3]{6} x^2 \sqrt [3]{189 x^2+\sqrt {3} \sqrt {27 \left (21 x^2-2 c_1\right ){}^2-16 \left (5 x^4-10 c_1 x^2-2\right ){}^3}-18 c_1}+\frac {10\ 6^{2/3} x^2 \left (5 x^4-10 c_1 x^2-2\right )}{\sqrt [3]{189 x^2+\sqrt {3} \sqrt {27 \left (21 x^2-2 c_1\right ){}^2-16 \left (5 x^4-10 c_1 x^2-2\right ){}^3}-18 c_1}}+3}{x^4}}+\sqrt {3} x^2 \sqrt {-\frac {-6 x^2+5 \sqrt [3]{6} x^4 \sqrt [3]{189 x^2+\sqrt {3} \sqrt {27 \left (21 x^2-2 c_1\right ){}^2-16 \left (5 x^4-10 c_1 x^2-2\right ){}^3}-18 c_1}+\frac {10\ 6^{2/3} x^4 \left (5 x^4-10 c_1 x^2-2\right )}{\sqrt [3]{189 x^2+\sqrt {3} \sqrt {27 \left (21 x^2-2 c_1\right ){}^2-16 \left (5 x^4-10 c_1 x^2-2\right ){}^3}-18 c_1}}+\frac {6 \sqrt {3} \left (100 x^4+1\right )}{\sqrt {\frac {5 \sqrt [3]{6} x^2 \sqrt [3]{189 x^2+\sqrt {3} \sqrt {27 \left (21 x^2-2 c_1\right ){}^2-16 \left (5 x^4-10 c_1 x^2-2\right ){}^3}-18 c_1}+\frac {10\ 6^{2/3} x^2 \left (5 x^4-10 c_1 x^2-2\right )}{\sqrt [3]{189 x^2+\sqrt {3} \sqrt {27 \left (21 x^2-2 c_1\right ){}^2-16 \left (5 x^4-10 c_1 x^2-2\right ){}^3}-18 c_1}}+3}{x^4}}}}{x^6}}-3}{30 x^2} \\
y(x)\to \frac {-\sqrt {3} x^2 \sqrt {\frac {5 \sqrt [3]{6} x^2 \sqrt [3]{189 x^2+\sqrt {3} \sqrt {27 \left (21 x^2-2 c_1\right ){}^2-16 \left (5 x^4-10 c_1 x^2-2\right ){}^3}-18 c_1}+\frac {10\ 6^{2/3} x^2 \left (5 x^4-10 c_1 x^2-2\right )}{\sqrt [3]{189 x^2+\sqrt {3} \sqrt {27 \left (21 x^2-2 c_1\right ){}^2-16 \left (5 x^4-10 c_1 x^2-2\right ){}^3}-18 c_1}}+3}{x^4}}+\sqrt {3} x^2 \sqrt {-\frac {-6 x^2+5 \sqrt [3]{6} x^4 \sqrt [3]{189 x^2+\sqrt {3} \sqrt {27 \left (21 x^2-2 c_1\right ){}^2-16 \left (5 x^4-10 c_1 x^2-2\right ){}^3}-18 c_1}+\frac {10\ 6^{2/3} x^4 \left (5 x^4-10 c_1 x^2-2\right )}{\sqrt [3]{189 x^2+\sqrt {3} \sqrt {27 \left (21 x^2-2 c_1\right ){}^2-16 \left (5 x^4-10 c_1 x^2-2\right ){}^3}-18 c_1}}+\frac {6 \sqrt {3} \left (100 x^4+1\right )}{\sqrt {\frac {5 \sqrt [3]{6} x^2 \sqrt [3]{189 x^2+\sqrt {3} \sqrt {27 \left (21 x^2-2 c_1\right ){}^2-16 \left (5 x^4-10 c_1 x^2-2\right ){}^3}-18 c_1}+\frac {10\ 6^{2/3} x^2 \left (5 x^4-10 c_1 x^2-2\right )}{\sqrt [3]{189 x^2+\sqrt {3} \sqrt {27 \left (21 x^2-2 c_1\right ){}^2-16 \left (5 x^4-10 c_1 x^2-2\right ){}^3}-18 c_1}}+3}{x^4}}}}{x^6}}+3}{30 x^2} \\
y(x)\to \frac {\sqrt {3} x^2 \sqrt {\frac {5 \sqrt [3]{6} x^2 \sqrt [3]{189 x^2+\sqrt {3} \sqrt {27 \left (21 x^2-2 c_1\right ){}^2-16 \left (5 x^4-10 c_1 x^2-2\right ){}^3}-18 c_1}+\frac {10\ 6^{2/3} x^2 \left (5 x^4-10 c_1 x^2-2\right )}{\sqrt [3]{189 x^2+\sqrt {3} \sqrt {27 \left (21 x^2-2 c_1\right ){}^2-16 \left (5 x^4-10 c_1 x^2-2\right ){}^3}-18 c_1}}+3}{x^4}}-\sqrt {3} x^2 \sqrt {\frac {6 x^2-5 \sqrt [3]{6} x^4 \sqrt [3]{189 x^2+\sqrt {3} \sqrt {27 \left (21 x^2-2 c_1\right ){}^2-16 \left (5 x^4-10 c_1 x^2-2\right ){}^3}-18 c_1}-\frac {10\ 6^{2/3} x^4 \left (5 x^4-10 c_1 x^2-2\right )}{\sqrt [3]{189 x^2+\sqrt {3} \sqrt {27 \left (21 x^2-2 c_1\right ){}^2-16 \left (5 x^4-10 c_1 x^2-2\right ){}^3}-18 c_1}}+\frac {6 \sqrt {3} \left (100 x^4+1\right )}{\sqrt {\frac {5 \sqrt [3]{6} x^2 \sqrt [3]{189 x^2+\sqrt {3} \sqrt {27 \left (21 x^2-2 c_1\right ){}^2-16 \left (5 x^4-10 c_1 x^2-2\right ){}^3}-18 c_1}+\frac {10\ 6^{2/3} x^2 \left (5 x^4-10 c_1 x^2-2\right )}{\sqrt [3]{189 x^2+\sqrt {3} \sqrt {27 \left (21 x^2-2 c_1\right ){}^2-16 \left (5 x^4-10 c_1 x^2-2\right ){}^3}-18 c_1}}+3}{x^4}}}}{x^6}}+3}{30 x^2} \\
y(x)\to \frac {\sqrt {3} x^2 \sqrt {\frac {5 \sqrt [3]{6} x^2 \sqrt [3]{189 x^2+\sqrt {3} \sqrt {27 \left (21 x^2-2 c_1\right ){}^2-16 \left (5 x^4-10 c_1 x^2-2\right ){}^3}-18 c_1}+\frac {10\ 6^{2/3} x^2 \left (5 x^4-10 c_1 x^2-2\right )}{\sqrt [3]{189 x^2+\sqrt {3} \sqrt {27 \left (21 x^2-2 c_1\right ){}^2-16 \left (5 x^4-10 c_1 x^2-2\right ){}^3}-18 c_1}}+3}{x^4}}+\sqrt {3} x^2 \sqrt {\frac {6 x^2-5 \sqrt [3]{6} x^4 \sqrt [3]{189 x^2+\sqrt {3} \sqrt {27 \left (21 x^2-2 c_1\right ){}^2-16 \left (5 x^4-10 c_1 x^2-2\right ){}^3}-18 c_1}-\frac {10\ 6^{2/3} x^4 \left (5 x^4-10 c_1 x^2-2\right )}{\sqrt [3]{189 x^2+\sqrt {3} \sqrt {27 \left (21 x^2-2 c_1\right ){}^2-16 \left (5 x^4-10 c_1 x^2-2\right ){}^3}-18 c_1}}+\frac {6 \sqrt {3} \left (100 x^4+1\right )}{\sqrt {\frac {5 \sqrt [3]{6} x^2 \sqrt [3]{189 x^2+\sqrt {3} \sqrt {27 \left (21 x^2-2 c_1\right ){}^2-16 \left (5 x^4-10 c_1 x^2-2\right ){}^3}-18 c_1}+\frac {10\ 6^{2/3} x^2 \left (5 x^4-10 c_1 x^2-2\right )}{\sqrt [3]{189 x^2+\sqrt {3} \sqrt {27 \left (21 x^2-2 c_1\right ){}^2-16 \left (5 x^4-10 c_1 x^2-2\right ){}^3}-18 c_1}}+3}{x^4}}}}{x^6}}+3}{30 x^2} \\
\end{align*}