Internal
problem
ID
[9960]
Book
:
Collection
of
Kovacic
problems
Section
:
section
1
Problem
number
:
810
Date
solved
:
Wednesday, March 05, 2025 at 08:01:28 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=diff(diff(u(x),x),x)-(2*x+1)*diff(u(x),x)+(x^2+x-1)*u(x) = 0; dsolve(ode,u(x), singsol=all);
ode=D[u[x],{x,2}]-(2*x+1)*D[u[x],x]+(x^2+x-1)*u[x]==0; ic={}; DSolve[{ode,ic},u[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") u = Function("u") ode = Eq((-2*x - 1)*Derivative(u(x), x) + (x**2 + x - 1)*u(x) + Derivative(u(x), (x, 2)),0) ics = {} dsolve(ode,func=u(x),ics=ics)
False