60.1.339 problem 340

Internal problem ID [10353]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, linear first order
Problem number : 340
Date solved : Monday, January 27, 2025 at 07:22:02 PM
CAS classification : unknown

\begin{align*} \left (\frac {\operatorname {e1} \left (x +a \right )}{\left (\left (x +a \right )^{2}+y^{2}\right )^{{3}/{2}}}+\frac {\operatorname {e2} \left (x -a \right )}{\left (\left (x -a \right )^{2}+y^{2}\right )^{{3}/{2}}}\right ) y^{\prime }-y \left (\frac {\operatorname {e1}}{\left (\left (x +a \right )^{2}+y^{2}\right )^{{3}/{2}}}+\frac {\operatorname {e2}}{\left (\left (x -a \right )^{2}+y^{2}\right )^{{3}/{2}}}\right )&=0 \end{align*}

Solution by Maple

dsolve((e1*(x+a)/((x+a)^2+y(x)^2)^(3/2)+e2*(x-a)/((x-a)^2+y(x)^2)^(3/2))*diff(y(x),x)-y(x)*(e1/((x+a)^2+y(x)^2)^(3/2)+e2/((x-a)^2+y(x)^2)^(3/2)) = 0,y(x), singsol=all)
 
\[ \text {No solution found} \]

Solution by Mathematica

Time used: 0.000 (sec). Leaf size: 0

DSolve[-(y[x]*(e2/((-a + x)^2 + y[x]^2)^(3/2) + e1/((a + x)^2 + y[x]^2)^(3/2))) + ((e2*(-a + x))/((-a + x)^2 + y[x]^2)^(3/2) + (e1*(a + x))/((a + x)^2 + y[x]^2)^(3/2))*D[y[x],x]==0,y[x],x,IncludeSingularSolutions -> True]
 

Not solved