Internal
problem
ID
[10360]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
1,
linear
first
order
Problem
number
:
347
Date
solved
:
Monday, January 27, 2025 at 07:30:33 PM
CAS
classification
:
[_separable]
\begin{align*} y^{\prime } \left (1+\sin \left (x \right )\right ) \sin \left (y\right )+\cos \left (x \right ) \left (\cos \left (y\right )-1\right )&=0 \end{align*}
Time used: 0.230 (sec). Leaf size: 12
Time used: 0.966 (sec). Leaf size: 381
\begin{align*}
y(x)\to 0 \\
\text {Solve}\left [\int _1^x\exp \left (\int _1^{K[2]}\left (1-\frac {2}{\tan \left (\frac {K[1]}{2}\right )+1}\right )dK[1]\right ) \left (\cos \left (\frac {K[2]}{2}-\frac {y(x)}{2}\right )-\cos \left (\frac {K[2]}{2}+\frac {y(x)}{2}\right )+\sin \left (\frac {K[2]}{2}-\frac {y(x)}{2}\right )-\sin \left (\frac {K[2]}{2}+\frac {y(x)}{2}\right )\right )dK[2]+\int _1^{y(x)}\left (\exp \left (\int _1^x\left (1-\frac {2}{\tan \left (\frac {K[1]}{2}\right )+1}\right )dK[1]\right ) \cos \left (\frac {x}{2}-\frac {K[3]}{2}\right )+\exp \left (\int _1^x\left (1-\frac {2}{\tan \left (\frac {K[1]}{2}\right )+1}\right )dK[1]\right ) \cos \left (\frac {x}{2}+\frac {K[3]}{2}\right )+\exp \left (\int _1^x\left (1-\frac {2}{\tan \left (\frac {K[1]}{2}\right )+1}\right )dK[1]\right ) \sin \left (\frac {x}{2}-\frac {K[3]}{2}\right )+\exp \left (\int _1^x\left (1-\frac {2}{\tan \left (\frac {K[1]}{2}\right )+1}\right )dK[1]\right ) \sin \left (\frac {x}{2}+\frac {K[3]}{2}\right )-\int _1^x\exp \left (\int _1^{K[2]}\left (1-\frac {2}{\tan \left (\frac {K[1]}{2}\right )+1}\right )dK[1]\right ) \left (-\frac {1}{2} \cos \left (\frac {K[2]}{2}-\frac {K[3]}{2}\right )-\frac {1}{2} \cos \left (\frac {K[2]}{2}+\frac {K[3]}{2}\right )+\frac {1}{2} \sin \left (\frac {K[2]}{2}-\frac {K[3]}{2}\right )+\frac {1}{2} \sin \left (\frac {K[2]}{2}+\frac {K[3]}{2}\right )\right )dK[2]\right )dK[3]&=c_1,y(x)\right ] \\
y(x)\to 0 \\
\end{align*}