59.1.809 problem 832

Internal problem ID [9981]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 832
Date solved : Wednesday, March 05, 2025 at 08:01:46 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} 2 x^{2} \left (2+x \right ) y^{\prime \prime }+5 x^{2} y^{\prime }+\left (1+x \right ) y&=0 \end{align*}

Maple. Time used: 0.043 (sec). Leaf size: 39
ode:=2*x^2*(x+2)*diff(diff(y(x),x),x)+5*x^2*diff(y(x),x)+(1+x)*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {\sqrt {x}\, \left (\sqrt {2}\, \sqrt {x +2}\, c_{2} -2 \,\operatorname {arctanh}\left (\frac {\sqrt {2}\, \sqrt {x +2}}{2}\right ) c_{2} +c_{1} \right )}{\left (x +2\right )^{{3}/{2}}} \]
Mathematica. Time used: 0.384 (sec). Leaf size: 83
ode=2*x^2*(2+x)*D[y[x],{x,2}] +5*x^2*D[y[x],x]+(1+x)*y[x] == 0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \frac {\exp \left (\int _1^x\frac {K[1]+4}{4 K[1]^2+8 K[1]}dK[1]\right ) \left (c_2 \int _1^x\exp \left (-2 \int _1^{K[2]}\frac {K[1]+4}{4 K[1]^2+8 K[1]}dK[1]\right )dK[2]+c_1\right )}{(x+2)^{5/4}} \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(2*x**2*(x + 2)*Derivative(y(x), (x, 2)) + 5*x**2*Derivative(y(x), x) + (x + 1)*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
False