60.1.357 problem 358

Internal problem ID [10371]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, linear first order
Problem number : 358
Date solved : Monday, January 27, 2025 at 07:35:10 PM
CAS classification : [_separable]

\begin{align*} y^{\prime } \sin \left (y\right ) \cos \left (x \right )+\cos \left (y\right ) \sin \left (x \right )&=0 \end{align*}

Solution by Maple

Time used: 0.179 (sec). Leaf size: 9

dsolve(diff(y(x),x)*sin(y(x))*cos(x)+cos(y(x))*sin(x) = 0,y(x), singsol=all)
 
\[ y = \arccos \left (\sec \left (x \right ) c_{1} \right ) \]

Solution by Mathematica

Time used: 0.136 (sec). Leaf size: 82

DSolve[Cos[y[x]]*Sin[x] + Cos[x]*Sin[y[x]]*D[y[x],x]==0,y[x],x,IncludeSingularSolutions -> True]
 
\[ \text {Solve}\left [\int _1^x(-\sin (K[1]-y(x))-\sin (K[1]+y(x)))dK[1]+\int _1^{y(x)}\left (\sin (x-K[2])-\sin (x+K[2])-\int _1^x(\cos (K[1]-K[2])-\cos (K[1]+K[2]))dK[1]\right )dK[2]=c_1,y(x)\right ] \]