60.1.363 problem 364

Internal problem ID [10377]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, linear first order
Problem number : 364
Date solved : Monday, January 27, 2025 at 07:38:14 PM
CAS classification : [[_homogeneous, `class A`], _dAlembert]

\begin{align*} \left (y \sin \left (\frac {y}{x}\right )-x \cos \left (\frac {y}{x}\right )\right ) x y^{\prime }-\left (x \cos \left (\frac {y}{x}\right )+y \sin \left (\frac {y}{x}\right )\right ) y&=0 \end{align*}

Solution by Maple

Time used: 2.961 (sec). Leaf size: 18

dsolve((y(x)*sin(y(x)/x)-x*cos(y(x)/x))*x*diff(y(x),x)-(x*cos(y(x)/x)+y(x)*sin(y(x)/x))*y(x) = 0,y(x), singsol=all)
 
\[ y = x \operatorname {RootOf}\left (\textit {\_Z} \cos \left (\textit {\_Z} \right ) x^{2}-c_{1} \right ) \]

Solution by Mathematica

Time used: 0.328 (sec). Leaf size: 31

DSolve[-(y[x]*(x*Cos[y[x]/x] + Sin[y[x]/x]*y[x])) + x*(-(x*Cos[y[x]/x]) + Sin[y[x]/x]*y[x])*D[y[x],x]==0,y[x],x,IncludeSingularSolutions -> True]
 
\[ \text {Solve}\left [-\log \left (\frac {y(x)}{x}\right )-\log \left (\cos \left (\frac {y(x)}{x}\right )\right )=2 \log (x)+c_1,y(x)\right ] \]