Internal
problem
ID
[10003]
Book
:
Collection
of
Kovacic
problems
Section
:
section
3.
Problems
from
Kovacic
related
papers
Problem
number
:
Kovacic
1985
paper.
page
13.
section
3.2,
example
1
Date
solved
:
Wednesday, March 05, 2025 at 08:02:04 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=diff(diff(y(x),x),x) = 1/4*(4*x^6-8*x^5+12*x^4+4*x^3+7*x^2-20*x+4)/x^4*y(x); dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,2}]== (4*x^6-8*x^5+12*x^4+4*x^3+7*x^2-20*x+4)/(4*x^4)*y[x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(Derivative(y(x), (x, 2)) - (4*x**6 - 8*x**5 + 12*x**4 + 4*x**3 + 7*x**2 - 20*x + 4)*y(x)/(4*x**4),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : solve: Cannot solve Derivative(y(x), (x, 2)) - (4*x**6 - 8*x**5 + 12*x**4 + 4*x**3 + 7*x**2 - 20*x + 4)*y(x)/(4*x**4)