60.1.380 problem 381
Internal
problem
ID
[10394]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
1,
linear
first
order
Problem
number
:
381
Date
solved
:
Monday, January 27, 2025 at 07:38:56 PM
CAS
classification
:
[[_1st_order, _with_linear_symmetries], _dAlembert]
\begin{align*} {y^{\prime }}^{2}-2 x y^{\prime }+y&=0 \end{align*}
✓ Solution by Maple
Time used: 0.032 (sec). Leaf size: 603
dsolve(diff(y(x),x)^2-2*x*diff(y(x),x)+y(x) = 0,y(x), singsol=all)
\begin{align*}
y &= -\frac {\left (x^{2}+x \left (x^{3}+2 \sqrt {3}\, \sqrt {-c_{1} \left (x^{3}-3 c_{1} \right )}-6 c_{1} \right )^{{1}/{3}}+\left (x^{3}+2 \sqrt {3}\, \sqrt {-c_{1} \left (x^{3}-3 c_{1} \right )}-6 c_{1} \right )^{{2}/{3}}\right ) \left (x^{2}-3 x \left (x^{3}+2 \sqrt {3}\, \sqrt {-c_{1} \left (x^{3}-3 c_{1} \right )}-6 c_{1} \right )^{{1}/{3}}+\left (x^{3}+2 \sqrt {3}\, \sqrt {-c_{1} \left (x^{3}-3 c_{1} \right )}-6 c_{1} \right )^{{2}/{3}}\right )}{4 \left (x^{3}+2 \sqrt {3}\, \sqrt {-c_{1} \left (x^{3}-3 c_{1} \right )}-6 c_{1} \right )^{{2}/{3}}} \\
y &= -\frac {\left (i \left (x^{3}+2 \sqrt {3}\, \sqrt {-c_{1} \left (x^{3}-3 c_{1} \right )}-6 c_{1} \right )^{{2}/{3}} \sqrt {3}-i \sqrt {3}\, x^{2}+\left (x^{3}+2 \sqrt {3}\, \sqrt {-c_{1} \left (x^{3}-3 c_{1} \right )}-6 c_{1} \right )^{{2}/{3}}-2 x \left (x^{3}+2 \sqrt {3}\, \sqrt {-c_{1} \left (x^{3}-3 c_{1} \right )}-6 c_{1} \right )^{{1}/{3}}+x^{2}\right ) \left (i \left (x^{3}+2 \sqrt {3}\, \sqrt {-c_{1} \left (x^{3}-3 c_{1} \right )}-6 c_{1} \right )^{{2}/{3}} \sqrt {3}-i \sqrt {3}\, x^{2}+\left (x^{3}+2 \sqrt {3}\, \sqrt {-c_{1} \left (x^{3}-3 c_{1} \right )}-6 c_{1} \right )^{{2}/{3}}+6 x \left (x^{3}+2 \sqrt {3}\, \sqrt {-c_{1} \left (x^{3}-3 c_{1} \right )}-6 c_{1} \right )^{{1}/{3}}+x^{2}\right )}{16 \left (x^{3}+2 \sqrt {3}\, \sqrt {-c_{1} \left (x^{3}-3 c_{1} \right )}-6 c_{1} \right )^{{2}/{3}}} \\
y &= -\frac {\left (i \sqrt {3}\, x^{2}-i \left (x^{3}+2 \sqrt {3}\, \sqrt {-c_{1} \left (x^{3}-3 c_{1} \right )}-6 c_{1} \right )^{{2}/{3}} \sqrt {3}+x^{2}-2 x \left (x^{3}+2 \sqrt {3}\, \sqrt {-c_{1} \left (x^{3}-3 c_{1} \right )}-6 c_{1} \right )^{{1}/{3}}+\left (x^{3}+2 \sqrt {3}\, \sqrt {-c_{1} \left (x^{3}-3 c_{1} \right )}-6 c_{1} \right )^{{2}/{3}}\right ) \left (i \sqrt {3}\, x^{2}-i \left (x^{3}+2 \sqrt {3}\, \sqrt {-c_{1} \left (x^{3}-3 c_{1} \right )}-6 c_{1} \right )^{{2}/{3}} \sqrt {3}+x^{2}+6 x \left (x^{3}+2 \sqrt {3}\, \sqrt {-c_{1} \left (x^{3}-3 c_{1} \right )}-6 c_{1} \right )^{{1}/{3}}+\left (x^{3}+2 \sqrt {3}\, \sqrt {-c_{1} \left (x^{3}-3 c_{1} \right )}-6 c_{1} \right )^{{2}/{3}}\right )}{16 \left (x^{3}+2 \sqrt {3}\, \sqrt {-c_{1} \left (x^{3}-3 c_{1} \right )}-6 c_{1} \right )^{{2}/{3}}} \\
\end{align*}
✓ Solution by Mathematica
Time used: 60.184 (sec). Leaf size: 954
DSolve[y[x] - 2*x*D[y[x],x] + D[y[x],x]^2==0,y[x],x,IncludeSingularSolutions -> True]
\begin{align*}
y(x)\to \frac {1}{4} \left (x^2+\frac {x \left (x^3+8 e^{3 c_1}\right )}{\sqrt [3]{x^6-20 e^{3 c_1} x^3+8 \sqrt {e^{3 c_1} \left (-x^3+e^{3 c_1}\right ){}^3}-8 e^{6 c_1}}}+\sqrt [3]{x^6-20 e^{3 c_1} x^3+8 \sqrt {e^{3 c_1} \left (-x^3+e^{3 c_1}\right ){}^3}-8 e^{6 c_1}}\right ) \\
y(x)\to \frac {1}{72} \left (18 x^2-\frac {9 i \left (\sqrt {3}-i\right ) x \left (x^3+8 e^{3 c_1}\right )}{\sqrt [3]{x^6-20 e^{3 c_1} x^3+8 \sqrt {e^{3 c_1} \left (-x^3+e^{3 c_1}\right ){}^3}-8 e^{6 c_1}}}+9 i \left (\sqrt {3}+i\right ) \sqrt [3]{x^6-20 e^{3 c_1} x^3+8 \sqrt {e^{3 c_1} \left (-x^3+e^{3 c_1}\right ){}^3}-8 e^{6 c_1}}\right ) \\
y(x)\to \frac {1}{72} \left (18 x^2+\frac {9 i \left (\sqrt {3}+i\right ) x \left (x^3+8 e^{3 c_1}\right )}{\sqrt [3]{x^6-20 e^{3 c_1} x^3+8 \sqrt {e^{3 c_1} \left (-x^3+e^{3 c_1}\right ){}^3}-8 e^{6 c_1}}}-9 \left (1+i \sqrt {3}\right ) \sqrt [3]{x^6-20 e^{3 c_1} x^3+8 \sqrt {e^{3 c_1} \left (-x^3+e^{3 c_1}\right ){}^3}-8 e^{6 c_1}}\right ) \\
y(x)\to \frac {x^4+\left (x^6+20 e^{3 c_1} x^3+8 \sqrt {e^{3 c_1} \left (x^3+e^{3 c_1}\right ){}^3}-8 e^{6 c_1}\right ){}^{2/3}+x^2 \sqrt [3]{x^6+20 e^{3 c_1} x^3+8 \sqrt {e^{3 c_1} \left (x^3+e^{3 c_1}\right ){}^3}-8 e^{6 c_1}}-8 e^{3 c_1} x}{4 \sqrt [3]{x^6+20 e^{3 c_1} x^3+8 \sqrt {e^{3 c_1} \left (x^3+e^{3 c_1}\right ){}^3}-8 e^{6 c_1}}} \\
y(x)\to \frac {1}{72} \left (18 x^2+\frac {9 \left (1+i \sqrt {3}\right ) x \left (-x^3+8 e^{3 c_1}\right )}{\sqrt [3]{x^6+20 e^{3 c_1} x^3+8 \sqrt {e^{3 c_1} \left (x^3+e^{3 c_1}\right ){}^3}-8 e^{6 c_1}}}+9 i \left (\sqrt {3}+i\right ) \sqrt [3]{x^6+20 e^{3 c_1} x^3+8 \sqrt {e^{3 c_1} \left (x^3+e^{3 c_1}\right ){}^3}-8 e^{6 c_1}}\right ) \\
y(x)\to \frac {1}{72} \left (18 x^2+\frac {9 i \left (\sqrt {3}+i\right ) x \left (x^3-8 e^{3 c_1}\right )}{\sqrt [3]{x^6+20 e^{3 c_1} x^3+8 \sqrt {e^{3 c_1} \left (x^3+e^{3 c_1}\right ){}^3}-8 e^{6 c_1}}}-9 \left (1+i \sqrt {3}\right ) \sqrt [3]{x^6+20 e^{3 c_1} x^3+8 \sqrt {e^{3 c_1} \left (x^3+e^{3 c_1}\right ){}^3}-8 e^{6 c_1}}\right ) \\
\end{align*}