60.1.406 problem 408

Internal problem ID [10420]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, linear first order
Problem number : 408
Date solved : Monday, January 27, 2025 at 07:42:59 PM
CAS classification : [[_homogeneous, `class A`], _rational, _dAlembert]

\begin{align*} x {y^{\prime }}^{2}-2 y+x&=0 \end{align*}

Solution by Maple

Time used: 0.041 (sec). Leaf size: 96

dsolve(x*diff(y(x),x)^2-2*y(x)+x = 0,y(x), singsol=all)
 
\begin{align*} y &= \frac {\left (2 \operatorname {LambertW}\left (\frac {\sqrt {c_{1} x}}{c_{1}}\right )^{2}+2 \operatorname {LambertW}\left (\frac {\sqrt {c_{1} x}}{c_{1}}\right )+1\right ) x}{2 \operatorname {LambertW}\left (\frac {\sqrt {c_{1} x}}{c_{1}}\right )^{2}} \\ y &= \frac {\left (2 \operatorname {LambertW}\left (-\frac {\sqrt {c_{1} x}}{c_{1}}\right )^{2}+2 \operatorname {LambertW}\left (-\frac {\sqrt {c_{1} x}}{c_{1}}\right )+1\right ) x}{2 \operatorname {LambertW}\left (-\frac {\sqrt {c_{1} x}}{c_{1}}\right )^{2}} \\ \end{align*}

Solution by Mathematica

Time used: 0.557 (sec). Leaf size: 97

DSolve[x - 2*y[x] + x*D[y[x],x]^2==0,y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} \text {Solve}\left [\frac {2}{\sqrt {\frac {2 y(x)}{x}-1}-1}-2 \log \left (\sqrt {\frac {2 y(x)}{x}-1}-1\right )&=\log (x)+c_1,y(x)\right ] \\ \text {Solve}\left [\frac {2}{\sqrt {\frac {2 y(x)}{x}-1}+1}+2 \log \left (\sqrt {\frac {2 y(x)}{x}-1}+1\right )&=-\log (x)+c_1,y(x)\right ] \\ \end{align*}