60.1.409 problem 411

Internal problem ID [10423]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, linear first order
Problem number : 411
Date solved : Monday, January 27, 2025 at 07:43:04 PM
CAS classification : [[_homogeneous, `class A`], _rational, _dAlembert]

\begin{align*} x {y^{\prime }}^{2}+x y^{\prime }-y&=0 \end{align*}

Solution by Maple

Time used: 0.033 (sec). Leaf size: 65

dsolve(x*diff(y(x),x)^2+x*diff(y(x),x)-y(x) = 0,y(x), singsol=all)
 
\begin{align*} y &= \frac {\left (1+2 \operatorname {LambertW}\left (-\frac {1}{2 \sqrt {\frac {c_{1}}{x}}}\right )\right ) x}{4 \operatorname {LambertW}\left (-\frac {1}{2 \sqrt {\frac {c_{1}}{x}}}\right )^{2}} \\ y &= \frac {\left (1+2 \operatorname {LambertW}\left (\frac {1}{2 \sqrt {\frac {c_{1}}{x}}}\right )\right ) x}{4 \operatorname {LambertW}\left (\frac {1}{2 \sqrt {\frac {c_{1}}{x}}}\right )^{2}} \\ \end{align*}

Solution by Mathematica

Time used: 0.540 (sec). Leaf size: 102

DSolve[-y[x] + x*D[y[x],x] + x*D[y[x],x]^2==0,y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} \text {Solve}\left [\frac {1}{\sqrt {\frac {4 y(x)}{x}+1}-1}-\log \left (\sqrt {\frac {4 y(x)}{x}+1}-1\right )&=\frac {\log (x)}{2}+c_1,y(x)\right ] \\ \text {Solve}\left [\frac {1}{\sqrt {\frac {4 y(x)}{x}+1}+1}+\log \left (\sqrt {\frac {4 y(x)}{x}+1}+1\right )&=-\frac {\log (x)}{2}+c_1,y(x)\right ] \\ y(x)\to 0 \\ \end{align*}