7.15.6 problem 6

Internal problem ID [462]
Book : Elementary Differential Equations. By C. Henry Edwards, David E. Penney and David Calvis. 6th edition. 2008
Section : Chapter 3. Power series methods. Section 3.3 (Regular singular points). Problems at page 231
Problem number : 6
Date solved : Monday, January 27, 2025 at 02:53:55 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} x^{2} \left (-x^{2}+1\right ) y^{\prime \prime }+2 x y^{\prime }-2 y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Solution by Maple

Time used: 0.007 (sec). Leaf size: 27

Order:=6; 
dsolve(x^2*(1-x^2)*diff(y(x),x$2)+2*x*diff(y(x),x)-2*y(x)=0,y(x),type='series',x=0);
 
\[ y = c_1 x \left (1+\operatorname {O}\left (x^{6}\right )\right )+\frac {c_2 \left (12-36 x^{2}+\operatorname {O}\left (x^{6}\right )\right )}{x^{2}} \]

Solution by Mathematica

Time used: 0.014 (sec). Leaf size: 16

AsymptoticDSolveValue[x^2*(1-x^2)*D[y[x],{x,2}]+2*x*D[y[x],x]-2*y[x]==0,y[x],{x,0,"6"-1}]
 
\[ y(x)\to c_1 \left (\frac {1}{x^2}-3\right )+c_2 x \]