60.1.422 problem 424

Internal problem ID [10436]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, linear first order
Problem number : 424
Date solved : Monday, January 27, 2025 at 07:43:48 PM
CAS classification : [[_homogeneous, `class A`], _dAlembert]

\begin{align*} x {y^{\prime }}^{2}+a y y^{\prime }+b x&=0 \end{align*}

Solution by Maple

Time used: 0.084 (sec). Leaf size: 217

dsolve(x*diff(y(x),x)^2+a*y(x)*diff(y(x),x)+b*x = 0,y(x), singsol=all)
 
\begin{align*} \frac {-c_{1} 2^{\frac {a +2}{2 a +2}} \left (a y-\sqrt {a^{2} y^{2}-4 b \,x^{2}}\right ) {\left (\frac {a \left (-y \left (a +1\right ) \sqrt {a^{2} y^{2}-4 b \,x^{2}}+\left (a^{2}+a \right ) y^{2}-2 b \,x^{2}\right )}{x^{2}}\right )}^{\frac {-a -2}{2 a +2}}+x^{2}}{x} &= 0 \\ \frac {c_{1} 2^{\frac {a +2}{2 a +2}} \left (a y+\sqrt {a^{2} y^{2}-4 b \,x^{2}}\right ) {\left (\frac {a \left (y \left (a +1\right ) \sqrt {a^{2} y^{2}-4 b \,x^{2}}+\left (a^{2}+a \right ) y^{2}-2 b \,x^{2}\right )}{x^{2}}\right )}^{\frac {-a -2}{2 a +2}}+x^{2}}{x} &= 0 \\ \end{align*}

Solution by Mathematica

Time used: 2.099 (sec). Leaf size: 423

DSolve[b*x + a*y[x]*D[y[x],x] + x*D[y[x],x]^2==0,y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} \text {Solve}\left [-\frac {i \left (2 \log \left (-i \sqrt {4 b-\frac {a^2 y(x)^2}{x^2}}+\frac {a y(x)}{x}+2 i \sqrt {b}\right )+2 (a+1) \log \left (i \sqrt {4 b-\frac {a^2 y(x)^2}{x^2}}+\frac {a y(x)}{x}-2 i \sqrt {b}\right )-(a+2) \log \left (\frac {i (a+2) y(x) \sqrt {4 b-\frac {a^2 y(x)^2}{x^2}}}{x}+2 \sqrt {b} \left (\sqrt {4 b-\frac {a^2 y(x)^2}{x^2}}-\frac {i (a+2) y(x)}{x}\right )+\frac {a^2 y(x)^2}{x^2}-4 b\right )\right )}{4 (a+1)}&=c_1-\frac {1}{2} i \log (x),y(x)\right ] \\ \text {Solve}\left [\frac {i \left (2 (a+1) \log \left (-i \sqrt {4 b-\frac {a^2 y(x)^2}{x^2}}+\frac {a y(x)}{x}+2 i \sqrt {b}\right )+2 \log \left (i \sqrt {4 b-\frac {a^2 y(x)^2}{x^2}}+\frac {a y(x)}{x}-2 i \sqrt {b}\right )-(a+2) \log \left (-\frac {i (a+2) y(x) \sqrt {4 b-\frac {a^2 y(x)^2}{x^2}}}{x}+2 \sqrt {b} \left (\sqrt {4 b-\frac {a^2 y(x)^2}{x^2}}+\frac {i (a+2) y(x)}{x}\right )+\frac {a^2 y(x)^2}{x^2}-4 b\right )\right )}{4 (a+1)}&=\frac {1}{2} i \log (x)+c_1,y(x)\right ] \\ \end{align*}