60.1.43 problem 43

Internal problem ID [10057]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, linear first order
Problem number : 43
Date solved : Friday, March 14, 2025 at 01:51:25 AM
CAS classification : [_Abel]

\begin{align*} y^{\prime }+\left (4 a^{2} x +3 a \,x^{2}+b \right ) y^{3}+3 x y^{2}&=0 \end{align*}

Maple. Time used: 0.002 (sec). Leaf size: 470
ode:=diff(y(x),x)+(4*a^2*x+3*a*x^2+b)*y(x)^3+3*x*y(x)^2 = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ \frac {a \sqrt {3}\, \left (\operatorname {BesselI}\left (1+\frac {\sqrt {\frac {4 a^{3}-3 b}{a^{3}}}}{2}, -\frac {\sqrt {3}\, \sqrt {\frac {\left (4 a^{2} x +3 a \,x^{2}+b \right ) y-2 a}{a^{3} y}}}{2}\right ) c_{1} -\operatorname {BesselK}\left (1+\frac {\sqrt {\frac {4 a^{3}-3 b}{a^{3}}}}{2}, -\frac {\sqrt {3}\, \sqrt {\frac {\left (4 a^{2} x +3 a \,x^{2}+b \right ) y-2 a}{a^{3} y}}}{2}\right )\right ) \sqrt {\frac {\left (4 a^{2} x +3 a \,x^{2}+b \right ) y-2 a}{a^{3} y}}-\left (c_{1} \operatorname {BesselI}\left (\frac {\sqrt {\frac {4 a^{3}-3 b}{a^{3}}}}{2}, -\frac {\sqrt {3}\, \sqrt {\frac {\left (4 a^{2} x +3 a \,x^{2}+b \right ) y-2 a}{a^{3} y}}}{2}\right )+\operatorname {BesselK}\left (\frac {\sqrt {\frac {4 a^{3}-3 b}{a^{3}}}}{2}, -\frac {\sqrt {3}\, \sqrt {\frac {\left (4 a^{2} x +3 a \,x^{2}+b \right ) y-2 a}{a^{3} y}}}{2}\right )\right ) \left (\sqrt {\frac {4 a^{3}-3 b}{a^{3}}}\, a -2 a -3 x \right )}{\operatorname {BesselI}\left (1+\frac {\sqrt {\frac {4 a^{3}-3 b}{a^{3}}}}{2}, -\frac {\sqrt {3}\, \sqrt {\frac {\left (4 a^{2} x +3 a \,x^{2}+b \right ) y-2 a}{a^{3} y}}}{2}\right ) \sqrt {3}\, \sqrt {\frac {\left (4 a^{2} x +3 a \,x^{2}+b \right ) y-2 a}{a^{3} y}}\, a -\operatorname {BesselI}\left (\frac {\sqrt {\frac {4 a^{3}-3 b}{a^{3}}}}{2}, -\frac {\sqrt {3}\, \sqrt {\frac {\left (4 a^{2} x +3 a \,x^{2}+b \right ) y-2 a}{a^{3} y}}}{2}\right ) \left (\sqrt {\frac {4 a^{3}-3 b}{a^{3}}}\, a -2 a -3 x \right )} = 0 \]
Mathematica. Time used: 4.072 (sec). Leaf size: 490
ode=D[y[x],x] + (3*a*x^2 + 4*a^2*x + b)*y[x]^3 + 3*x*y[x]^2==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ \text {Solve}\left [c_1=-\frac {i \sqrt {-\frac {4 a^3-3 b}{4 a^3}-\frac {3}{2 a^2 y(x)}+\frac {(-2 a-3 x)^2}{4 a^2}} \operatorname {BesselJ}\left (\frac {1}{2} \sqrt {\frac {4 a^3-3 b}{a^3}}+1,-i \sqrt {\frac {(-2 a-3 x)^2}{4 a^2}-\frac {4 a^3-3 b}{4 a^3}-\frac {3}{2 a^2 y(x)}}\right )+\left (\frac {1}{2} \sqrt {\frac {4 a^3-3 b}{a^3}}+\frac {-2 a-3 x}{2 a}\right ) \operatorname {BesselJ}\left (\frac {1}{2} \sqrt {\frac {4 a^3-3 b}{a^3}},-i \sqrt {\frac {(-2 a-3 x)^2}{4 a^2}-\frac {4 a^3-3 b}{4 a^3}-\frac {3}{2 a^2 y(x)}}\right )}{i \sqrt {-\frac {4 a^3-3 b}{4 a^3}-\frac {3}{2 a^2 y(x)}+\frac {(-2 a-3 x)^2}{4 a^2}} \operatorname {BesselY}\left (\frac {1}{2} \sqrt {\frac {4 a^3-3 b}{a^3}}+1,-i \sqrt {\frac {(-2 a-3 x)^2}{4 a^2}-\frac {4 a^3-3 b}{4 a^3}-\frac {3}{2 a^2 y(x)}}\right )+\left (\frac {1}{2} \sqrt {\frac {4 a^3-3 b}{a^3}}+\frac {-2 a-3 x}{2 a}\right ) \operatorname {BesselY}\left (\frac {1}{2} \sqrt {\frac {4 a^3-3 b}{a^3}},-i \sqrt {\frac {(-2 a-3 x)^2}{4 a^2}-\frac {4 a^3-3 b}{4 a^3}-\frac {3}{2 a^2 y(x)}}\right )},y(x)\right ] \]
Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
b = symbols("b") 
y = Function("y") 
ode = Eq(3*x*y(x)**2 + (4*a**2*x + 3*a*x**2 + b)*y(x)**3 + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out