60.1.434 problem 436

Internal problem ID [10448]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, linear first order
Problem number : 436
Date solved : Monday, January 27, 2025 at 07:45:32 PM
CAS classification : [_rational, [_1st_order, `_with_symmetry_[F(x),G(x)*y+H(x)]`]]

\begin{align*} x^{2} {y^{\prime }}^{2}-2 x y y^{\prime }+y^{2} \left (-x^{2}+1\right )-x^{4}&=0 \end{align*}

Solution by Maple

Time used: 0.441 (sec). Leaf size: 56

dsolve(x^2*diff(y(x),x)^2-2*x*y(x)*diff(y(x),x)+y(x)^2*(-x^2+1)-x^4 = 0,y(x), singsol=all)
 
\begin{align*} y &= -i x \\ y &= i x \\ y &= -\frac {x \left ({\mathrm e}^{x}-c_{1}^{2} {\mathrm e}^{-x}\right )}{2 c_{1}} \\ y &= \frac {x \left (c_{1}^{2} {\mathrm e}^{x}-{\mathrm e}^{-x}\right )}{2 c_{1}} \\ \end{align*}

Solution by Mathematica

Time used: 0.149 (sec). Leaf size: 26

DSolve[-x^4 + (1 - x^2)*y[x]^2 - 2*x*y[x]*D[y[x],x] + x^2*D[y[x],x]^2==0,y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} y(x)\to -x \sinh (x-c_1) \\ y(x)\to x \sinh (x+c_1) \\ \end{align*}