60.1.58 problem 59

Internal problem ID [10072]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, linear first order
Problem number : 59
Date solved : Wednesday, March 05, 2025 at 08:20:55 AM
CAS classification : [_quadrature]

\begin{align*} y^{\prime }-a \sqrt {y^{2}+1}-b&=0 \end{align*}

Maple. Time used: 0.003 (sec). Leaf size: 26
ode:=diff(y(x),x)-a*(1+y(x)^2)^(1/2)-b = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ x -\int _{}^{y}\frac {1}{a \sqrt {\textit {\_a}^{2}+1}+b}d \textit {\_a} +c_{1} = 0 \]
Mathematica. Time used: 0.491 (sec). Leaf size: 78
ode=D[y[x],x] - a*Sqrt[y[x]^2+1] - b==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to \text {InverseFunction}\left [\int _1^{\text {$\#$1}}\frac {1}{\sqrt {K[1]^2+1} a+b}dK[1]\&\right ][x+c_1] \\ y(x)\to -\frac {\sqrt {b^2-a^2}}{a} \\ y(x)\to \frac {\sqrt {b^2-a^2}}{a} \\ \end{align*}
Sympy. Time used: 1.018 (sec). Leaf size: 20
from sympy import * 
x = symbols("x") 
a = symbols("a") 
b = symbols("b") 
y = Function("y") 
ode = Eq(-a*sqrt(y(x)**2 + 1) - b + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ - \int \limits ^{y{\left (x \right )}} \frac {1}{a \sqrt {y^{2} + 1} + b}\, dy = C_{1} - x \]