60.1.454 problem 457

Internal problem ID [10468]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, linear first order
Problem number : 457
Date solved : Monday, January 27, 2025 at 07:49:29 PM
CAS classification : [[_homogeneous, `class G`], _rational]

\begin{align*} x^{4} {y^{\prime }}^{2}-x y^{\prime }-y&=0 \end{align*}

Solution by Maple

Time used: 1.348 (sec). Leaf size: 77

dsolve(x^4*diff(y(x),x)^2-x*diff(y(x),x)-y(x) = 0,y(x), singsol=all)
 
\begin{align*} y &= -\frac {1}{4 x^{2}} \\ y &= \frac {-c_{1} i-x}{c_{1}^{2} x} \\ y &= \frac {c_{1} i-x}{x \,c_{1}^{2}} \\ y &= \frac {c_{1} i-x}{x \,c_{1}^{2}} \\ y &= \frac {-c_{1} i-x}{c_{1}^{2} x} \\ \end{align*}

Solution by Mathematica

Time used: 0.526 (sec). Leaf size: 123

DSolve[-y[x] - x*D[y[x],x] + x^4*D[y[x],x]^2==0,y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} \text {Solve}\left [-\frac {x \sqrt {4 x^2 y(x)+1} \text {arctanh}\left (\sqrt {4 x^2 y(x)+1}\right )}{\sqrt {4 x^4 y(x)+x^2}}-\frac {1}{2} \log (y(x))&=c_1,y(x)\right ] \\ \text {Solve}\left [\frac {x \sqrt {4 x^2 y(x)+1} \text {arctanh}\left (\sqrt {4 x^2 y(x)+1}\right )}{\sqrt {4 x^4 y(x)+x^2}}-\frac {1}{2} \log (y(x))&=c_1,y(x)\right ] \\ y(x)\to 0 \\ \end{align*}