60.1.456 problem 459

Internal problem ID [10470]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, linear first order
Problem number : 459
Date solved : Monday, January 27, 2025 at 07:49:32 PM
CAS classification : [[_1st_order, `_with_symmetry_[F(x),G(x)*y+H(x)]`]]

\begin{align*} {\mathrm e}^{-2 x} {y^{\prime }}^{2}-\left (y^{\prime }-1\right )^{2}+{\mathrm e}^{-2 y}&=0 \end{align*}

Solution by Maple

Time used: 0.188 (sec). Leaf size: 128

dsolve(exp(-2*x)*diff(y(x),x)^2-(diff(y(x),x)-1)^2+exp(-2*y(x)) = 0,y(x), singsol=all)
 
\begin{align*} y &= c_{1} -\ln \left (\frac {\sqrt {{\mathrm e}^{-2 x +4 c_{1}}-{\mathrm e}^{-2 x +2 c_{1}}}\, {\mathrm e}^{2 x}-{\mathrm e}^{2 c_{1}}}{-{\mathrm e}^{2 c_{1} +2 x}+{\mathrm e}^{2 x}+{\mathrm e}^{2 c_{1}}}\right ) \\ y &= c_{1} -\ln \left (\frac {-\sqrt {{\mathrm e}^{-2 x +4 c_{1}}-{\mathrm e}^{-2 x +2 c_{1}}}\, {\mathrm e}^{2 x}-{\mathrm e}^{2 c_{1}}}{-{\mathrm e}^{2 c_{1} +2 x}+{\mathrm e}^{2 x}+{\mathrm e}^{2 c_{1}}}\right ) \\ \end{align*}

Solution by Mathematica

Time used: 21.066 (sec). Leaf size: 809

DSolve[E^(-2*y[x]) - (-1 + D[y[x],x])^2 + D[y[x],x]^2/E^(2*x)==0,y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} \text {Solve}\left [\int _1^x\left (\frac {\sqrt {e^{2 K[1]}}}{\left (-1+e^{K[1]}\right ) \left (1+e^{K[1]}\right )}-\frac {\sqrt {e^{2 K[1]}} \sqrt {e^{2 K[1]+2 y(x)} \left (-1+e^{2 K[1]}+e^{2 y(x)}\right )}}{\left (-1+e^{K[1]}\right ) \left (1+e^{K[1]}\right ) \left (-1+e^{2 K[1]}+e^{2 y(x)}\right )}\right )dK[1]+\int _1^{y(x)}\left (\frac {\sqrt {e^{2 x+2 K[2]} \left (-1+e^{2 x}+e^{2 K[2]}\right )}}{\sqrt {e^{2 x}} \left (-1+e^{2 x}+e^{2 K[2]}\right )}-\int _1^x\left (\frac {2 e^{2 K[2]} \sqrt {e^{2 K[1]}} \sqrt {e^{2 K[1]+2 K[2]} \left (-1+e^{2 K[1]}+e^{2 K[2]}\right )}}{\left (-1+e^{K[1]}\right ) \left (1+e^{K[1]}\right ) \left (-1+e^{2 K[1]}+e^{2 K[2]}\right )^2}-\frac {\sqrt {e^{2 K[1]}} \left (2 e^{2 K[1]+2 K[2]} \left (-1+e^{2 K[1]}+e^{2 K[2]}\right )+2 e^{2 K[1]+4 K[2]}\right )}{2 \left (-1+e^{K[1]}\right ) \left (1+e^{K[1]}\right ) \left (-1+e^{2 K[1]}+e^{2 K[2]}\right ) \sqrt {e^{2 K[1]+2 K[2]} \left (-1+e^{2 K[1]}+e^{2 K[2]}\right )}}\right )dK[1]\right )dK[2]&=c_1,y(x)\right ] \\ \text {Solve}\left [\int _1^x\left (\frac {\sqrt {e^{2 K[3]+2 y(x)} \left (-1+e^{2 K[3]}+e^{2 y(x)}\right )} \sqrt {e^{2 K[3]}}}{\left (-1+e^{K[3]}\right ) \left (1+e^{K[3]}\right ) \left (-1+e^{2 K[3]}+e^{2 y(x)}\right )}+\frac {\sqrt {e^{2 K[3]}}}{\left (-1+e^{K[3]}\right ) \left (1+e^{K[3]}\right )}\right )dK[3]+\int _1^{y(x)}\left (-\int _1^x\left (\frac {\sqrt {e^{2 K[3]}} \left (2 e^{2 K[3]+2 K[4]} \left (-1+e^{2 K[3]}+e^{2 K[4]}\right )+2 e^{2 K[3]+4 K[4]}\right )}{2 \left (-1+e^{K[3]}\right ) \left (1+e^{K[3]}\right ) \left (-1+e^{2 K[3]}+e^{2 K[4]}\right ) \sqrt {e^{2 K[3]+2 K[4]} \left (-1+e^{2 K[3]}+e^{2 K[4]}\right )}}-\frac {2 e^{2 K[4]} \sqrt {e^{2 K[3]}} \sqrt {e^{2 K[3]+2 K[4]} \left (-1+e^{2 K[3]}+e^{2 K[4]}\right )}}{\left (-1+e^{K[3]}\right ) \left (1+e^{K[3]}\right ) \left (-1+e^{2 K[3]}+e^{2 K[4]}\right )^2}\right )dK[3]-\frac {\sqrt {e^{2 x+2 K[4]} \left (-1+e^{2 x}+e^{2 K[4]}\right )}}{\sqrt {e^{2 x}} \left (-1+e^{2 x}+e^{2 K[4]}\right )}\right )dK[4]&=c_1,y(x)\right ] \\ y(x)\to \log \left (-\sqrt {1-e^{2 x}}\right ) \\ y(x)\to \log \left (\sqrt {1-e^{2 x}}\right ) \\ \end{align*}