60.1.465 problem 468
Internal
problem
ID
[10479]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
1,
linear
first
order
Problem
number
:
468
Date
solved
:
Monday, January 27, 2025 at 07:54:53 PM
CAS
classification
:
[[_homogeneous, `class A`], _dAlembert]
\begin{align*} y {y^{\prime }}^{2}-4 a^{2} x y^{\prime }+a^{2} y&=0 \end{align*}
✓ Solution by Maple
Time used: 0.181 (sec). Leaf size: 122
dsolve(y(x)*diff(y(x),x)^2-4*a^2*x*diff(y(x),x)+a^2*y(x) = 0,y(x), singsol=all)
\begin{align*}
y &= 0 \\
y &= \operatorname {RootOf}\left (-\ln \left (x \right )-\int _{}^{\textit {\_Z}}\frac {\textit {\_a}^{2}-2 a^{2}+\sqrt {-\textit {\_a}^{2} a^{2}+4 a^{4}}}{\textit {\_a} \left (\textit {\_a}^{2}-3 a^{2}\right )}d \textit {\_a} +c_{1} \right ) x \\
y &= \operatorname {RootOf}\left (-\ln \left (x \right )+\int _{}^{\textit {\_Z}}-\frac {\textit {\_a}^{2}-2 a^{2}-\sqrt {-\textit {\_a}^{2} a^{2}+4 a^{4}}}{\textit {\_a} \left (\textit {\_a}^{2}-3 a^{2}\right )}d \textit {\_a} +c_{1} \right ) x \\
\end{align*}
✓ Solution by Mathematica
Time used: 8.624 (sec). Leaf size: 758
DSolve[a^2*y[x] - 4*a^2*x*D[y[x],x] + y[x]*D[y[x],x]^2==0,y[x],x,IncludeSingularSolutions -> True]
\begin{align*}
\text {Solve}\left [\frac {8 \left (4 a^2-\frac {y(x)^2}{x^2}\right )^{3/2} \text {arcsinh}\left (\frac {\sqrt {\frac {y(x)}{x}-2 a}}{2 \sqrt {a}}\right )+\sqrt {a} \sqrt {\frac {y(x)}{a x}+2} \left (\sqrt {-\left (\frac {y(x)}{x}-2 a\right )^2} \sqrt {2 a+\frac {y(x)}{x}} \sqrt {4 a^2-\frac {y(x)^2}{x^2}} \left (\log \left (3 a^2-\frac {y(x)^2}{x^2}\right )-8 \arctan \left (\frac {\sqrt {2 a-\frac {y(x)}{x}}}{\sqrt {2 a+\frac {y(x)}{x}}}\right )+4 \log \left (\frac {y(x)}{x}\right )\right )+4 \sqrt {\frac {y(x)}{x}-2 a} \left (\frac {y(x)^2}{x^2}-4 a^2\right ) \text {arctanh}\left (\frac {\sqrt {4 a^2-\frac {y(x)^2}{x^2}}}{2 a}\right )-2 \sqrt {\frac {y(x)}{x}-2 a} \left (\frac {y(x)^2}{x^2}-4 a^2\right ) \text {arctanh}\left (\frac {\sqrt {4 a^2-\frac {y(x)^2}{x^2}}}{a}\right )\right )}{6 \sqrt {a} \sqrt {-\left (\frac {y(x)}{x}-2 a\right )^2} \sqrt {2 a+\frac {y(x)}{x}} \sqrt {\frac {y(x)}{a x}+2} \sqrt {4 a^2-\frac {y(x)^2}{x^2}}}&=-\log (x)+c_1,y(x)\right ] \\
\text {Solve}\left [\frac {\sqrt {a} \sqrt {\frac {y(x)}{a x}+2} \left (\sqrt {-\left (\frac {y(x)}{x}-2 a\right )^2} \sqrt {2 a+\frac {y(x)}{x}} \sqrt {4 a^2-\frac {y(x)^2}{x^2}} \left (\log \left (3 a^2-\frac {y(x)^2}{x^2}\right )+8 \arctan \left (\frac {\sqrt {2 a-\frac {y(x)}{x}}}{\sqrt {2 a+\frac {y(x)}{x}}}\right )+4 \log \left (\frac {y(x)}{x}\right )\right )-4 \sqrt {\frac {y(x)}{x}-2 a} \left (\frac {y(x)^2}{x^2}-4 a^2\right ) \text {arctanh}\left (\frac {\sqrt {4 a^2-\frac {y(x)^2}{x^2}}}{2 a}\right )+2 \sqrt {\frac {y(x)}{x}-2 a} \left (\frac {y(x)^2}{x^2}-4 a^2\right ) \text {arctanh}\left (\frac {\sqrt {4 a^2-\frac {y(x)^2}{x^2}}}{a}\right )\right )-8 \left (4 a^2-\frac {y(x)^2}{x^2}\right )^{3/2} \text {arcsinh}\left (\frac {\sqrt {\frac {y(x)}{x}-2 a}}{2 \sqrt {a}}\right )}{6 \sqrt {a} \sqrt {-\left (\frac {y(x)}{x}-2 a\right )^2} \sqrt {2 a+\frac {y(x)}{x}} \sqrt {\frac {y(x)}{a x}+2} \sqrt {4 a^2-\frac {y(x)^2}{x^2}}}&=-\log (x)+c_1,y(x)\right ] \\
y(x)\to 0 \\
\end{align*}