7.15.13 problem 13

Internal problem ID [469]
Book : Elementary Differential Equations. By C. Henry Edwards, David E. Penney and David Calvis. 6th edition. 2008
Section : Chapter 3. Power series methods. Section 3.3 (Regular singular points). Problems at page 231
Problem number : 13
Date solved : Monday, January 27, 2025 at 02:53:57 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} \left (x^{2}-4\right ) y^{\prime \prime }+\left (x -2\right ) y^{\prime }+\left (x +2\right ) y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Solution by Maple

Time used: 0.003 (sec). Leaf size: 49

Order:=6; 
dsolve((x^2-4)*diff(y(x),x$2)+(x-2)*diff(y(x),x)+(x+2)*y(x)=0,y(x),type='series',x=0);
 
\[ y = \left (1+\frac {1}{4} x^{2}+\frac {1}{32} x^{4}\right ) y \left (0\right )+\left (x -\frac {1}{4} x^{2}+\frac {1}{6} x^{3}-\frac {1}{32} x^{4}+\frac {11}{480} x^{5}\right ) y^{\prime }\left (0\right )+O\left (x^{6}\right ) \]

Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 56

AsymptoticDSolveValue[(x^2-4)*D[y[x],{x,2}]+(x-2)*D[y[x],x]+(x+2)*y[x]==0,y[x],{x,0,"6"-1}]
 
\[ y(x)\to c_1 \left (\frac {x^4}{32}+\frac {x^2}{4}+1\right )+c_2 \left (\frac {11 x^5}{480}-\frac {x^4}{32}+\frac {x^3}{6}-\frac {x^2}{4}+x\right ) \]