60.1.515 problem 518

Internal problem ID [10529]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, linear first order
Problem number : 518
Date solved : Monday, January 27, 2025 at 08:52:03 PM
CAS classification : [_quadrature]

\begin{align*} {y^{\prime }}^{3}-\left (y-a \right )^{2} \left (y-b \right )^{2}&=0 \end{align*}

Solution by Maple

Time used: 0.070 (sec). Leaf size: 142

dsolve(diff(y(x),x)^3-(y(x)-a)^2*(y(x)-b)^2=0,y(x), singsol=all)
 
\begin{align*} y &= a \\ y &= b \\ x -\int _{}^{y}\frac {1}{\left (\left (\textit {\_a} -a \right )^{2} \left (\textit {\_a} -b \right )^{2}\right )^{{1}/{3}}}d \textit {\_a} -c_{1} &= 0 \\ \frac {2 \left (\int _{}^{y}\frac {1}{\left (\left (\textit {\_a} -a \right )^{2} \left (\textit {\_a} -b \right )^{2}\right )^{{1}/{3}}}d \textit {\_a} \right )+i \left (x -c_{1} \right ) \sqrt {3}+x -c_{1}}{1+i \sqrt {3}} &= 0 \\ \frac {-2 \left (\int _{}^{y}\frac {1}{\left (\left (\textit {\_a} -a \right )^{2} \left (\textit {\_a} -b \right )^{2}\right )^{{1}/{3}}}d \textit {\_a} \right )+i \left (x -c_{1} \right ) \sqrt {3}-x +c_{1}}{i \sqrt {3}-1} &= 0 \\ \end{align*}

Solution by Mathematica

Time used: 0.861 (sec). Leaf size: 246

DSolve[-((-a + y[x])^2*(-b + y[x])^2) + D[y[x],x]^3==0,y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} y(x)\to \text {InverseFunction}\left [-\frac {3 \sqrt [3]{a-\text {$\#$1}} \left (\frac {\text {$\#$1}-b}{a-b}\right )^{2/3} \operatorname {Hypergeometric2F1}\left (\frac {1}{3},\frac {2}{3},\frac {4}{3},\frac {a-\text {$\#$1}}{a-b}\right )}{(b-\text {$\#$1})^{2/3}}\&\right ][x+c_1] \\ y(x)\to \text {InverseFunction}\left [-\frac {3 \sqrt [3]{a-\text {$\#$1}} \left (\frac {\text {$\#$1}-b}{a-b}\right )^{2/3} \operatorname {Hypergeometric2F1}\left (\frac {1}{3},\frac {2}{3},\frac {4}{3},\frac {a-\text {$\#$1}}{a-b}\right )}{(b-\text {$\#$1})^{2/3}}\&\right ]\left [-\sqrt [3]{-1} x+c_1\right ] \\ y(x)\to \text {InverseFunction}\left [-\frac {3 \sqrt [3]{a-\text {$\#$1}} \left (\frac {\text {$\#$1}-b}{a-b}\right )^{2/3} \operatorname {Hypergeometric2F1}\left (\frac {1}{3},\frac {2}{3},\frac {4}{3},\frac {a-\text {$\#$1}}{a-b}\right )}{(b-\text {$\#$1})^{2/3}}\&\right ]\left [(-1)^{2/3} x+c_1\right ] \\ y(x)\to a \\ y(x)\to b \\ \end{align*}