7.15.19 problem 19

Internal problem ID [475]
Book : Elementary Differential Equations. By C. Henry Edwards, David E. Penney and David Calvis. 6th edition. 2008
Section : Chapter 3. Power series methods. Section 3.3 (Regular singular points). Problems at page 231
Problem number : 19
Date solved : Monday, January 27, 2025 at 02:53:59 AM
CAS classification : [[_Emden, _Fowler]]

\begin{align*} 2 x y^{\prime \prime }-y^{\prime }-y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Solution by Maple

Time used: 0.009 (sec). Leaf size: 44

Order:=6; 
dsolve(2*x*diff(y(x),x$2)-diff(y(x),x)-y(x)=0,y(x),type='series',x=0);
 
\[ y = c_1 \,x^{{3}/{2}} \left (1+\frac {1}{5} x +\frac {1}{70} x^{2}+\frac {1}{1890} x^{3}+\frac {1}{83160} x^{4}+\frac {1}{5405400} x^{5}+\operatorname {O}\left (x^{6}\right )\right )+c_2 \left (1-x -\frac {1}{2} x^{2}-\frac {1}{18} x^{3}-\frac {1}{360} x^{4}-\frac {1}{12600} x^{5}+\operatorname {O}\left (x^{6}\right )\right ) \]

Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 83

AsymptoticDSolveValue[2*x*D[y[x],{x,2}]-D[y[x],x]-y[x]==0,y[x],{x,0,"6"-1}]
 
\[ y(x)\to c_2 \left (-\frac {x^5}{12600}-\frac {x^4}{360}-\frac {x^3}{18}-\frac {x^2}{2}-x+1\right )+c_1 \left (\frac {x^5}{5405400}+\frac {x^4}{83160}+\frac {x^3}{1890}+\frac {x^2}{70}+\frac {x}{5}+1\right ) x^{3/2} \]