60.1.545 problem 548

Internal problem ID [10559]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, linear first order
Problem number : 548
Date solved : Monday, January 27, 2025 at 09:05:12 PM
CAS classification : [_quadrature]

\begin{align*} {y^{\prime }}^{6}-\left (y-a \right )^{4} \left (y-b \right )^{3}&=0 \end{align*}

Solution by Maple

Time used: 0.061 (sec). Leaf size: 273

dsolve(diff(y(x),x)^6-(y(x)-a)^4*(y(x)-b)^3=0,y(x), singsol=all)
 
\begin{align*} y &= a \\ y &= b \\ x -\int _{}^{y}\frac {1}{\left (\left (\textit {\_a} -a \right )^{4} \left (\textit {\_a} -b \right )^{3}\right )^{{1}/{6}}}d \textit {\_a} -c_{1} &= 0 \\ \frac {2 \left (\int _{}^{y}\frac {1}{\left (\left (\textit {\_a} -a \right )^{4} \left (\textit {\_a} -b \right )^{3}\right )^{{1}/{6}}}d \textit {\_a} \right )+i \left (x -c_{1} \right ) \sqrt {3}+x -c_{1}}{1+i \sqrt {3}} &= 0 \\ \frac {-2 \left (\int _{}^{y}\frac {1}{\left (\left (\textit {\_a} -a \right )^{4} \left (\textit {\_a} -b \right )^{3}\right )^{{1}/{6}}}d \textit {\_a} \right )+i \left (x -c_{1} \right ) \sqrt {3}-x +c_{1}}{i \sqrt {3}-1} &= 0 \\ \frac {2 \left (\int _{}^{y}\frac {1}{\left (\left (\textit {\_a} -a \right )^{4} \left (\textit {\_a} -b \right )^{3}\right )^{{1}/{6}}}d \textit {\_a} \right )+i \left (x -c_{1} \right ) \sqrt {3}-x +c_{1}}{i \sqrt {3}-1} &= 0 \\ \frac {-2 \left (\int _{}^{y}\frac {1}{\left (\left (\textit {\_a} -a \right )^{4} \left (\textit {\_a} -b \right )^{3}\right )^{{1}/{6}}}d \textit {\_a} \right )+i \left (x -c_{1} \right ) \sqrt {3}+x -c_{1}}{1+i \sqrt {3}} &= 0 \\ x +\int _{}^{y}\frac {1}{\left (\left (\textit {\_a} -a \right )^{4} \left (\textit {\_a} -b \right )^{3}\right )^{{1}/{6}}}d \textit {\_a} -c_{1} &= 0 \\ \end{align*}

Solution by Mathematica

Time used: 1.586 (sec). Leaf size: 489

DSolve[-((-a + y[x])^4*(-b + y[x])^3) + D[y[x],x]^6==0,y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} y(x)\to \text {InverseFunction}\left [-\frac {3 \sqrt [3]{a-\text {$\#$1}} \sqrt {\frac {\text {$\#$1}-b}{a-b}} \operatorname {Hypergeometric2F1}\left (\frac {1}{3},\frac {1}{2},\frac {4}{3},\frac {a-\text {$\#$1}}{a-b}\right )}{\sqrt {b-\text {$\#$1}}}\&\right ][c_1-i x] \\ y(x)\to \text {InverseFunction}\left [-\frac {3 \sqrt [3]{a-\text {$\#$1}} \sqrt {\frac {\text {$\#$1}-b}{a-b}} \operatorname {Hypergeometric2F1}\left (\frac {1}{3},\frac {1}{2},\frac {4}{3},\frac {a-\text {$\#$1}}{a-b}\right )}{\sqrt {b-\text {$\#$1}}}\&\right ][i x+c_1] \\ y(x)\to \text {InverseFunction}\left [-\frac {3 \sqrt [3]{a-\text {$\#$1}} \sqrt {\frac {\text {$\#$1}-b}{a-b}} \operatorname {Hypergeometric2F1}\left (\frac {1}{3},\frac {1}{2},\frac {4}{3},\frac {a-\text {$\#$1}}{a-b}\right )}{\sqrt {b-\text {$\#$1}}}\&\right ]\left [-\sqrt [6]{-1} x+c_1\right ] \\ y(x)\to \text {InverseFunction}\left [-\frac {3 \sqrt [3]{a-\text {$\#$1}} \sqrt {\frac {\text {$\#$1}-b}{a-b}} \operatorname {Hypergeometric2F1}\left (\frac {1}{3},\frac {1}{2},\frac {4}{3},\frac {a-\text {$\#$1}}{a-b}\right )}{\sqrt {b-\text {$\#$1}}}\&\right ]\left [\sqrt [6]{-1} x+c_1\right ] \\ y(x)\to \text {InverseFunction}\left [-\frac {3 \sqrt [3]{a-\text {$\#$1}} \sqrt {\frac {\text {$\#$1}-b}{a-b}} \operatorname {Hypergeometric2F1}\left (\frac {1}{3},\frac {1}{2},\frac {4}{3},\frac {a-\text {$\#$1}}{a-b}\right )}{\sqrt {b-\text {$\#$1}}}\&\right ]\left [-(-1)^{5/6} x+c_1\right ] \\ y(x)\to \text {InverseFunction}\left [-\frac {3 \sqrt [3]{a-\text {$\#$1}} \sqrt {\frac {\text {$\#$1}-b}{a-b}} \operatorname {Hypergeometric2F1}\left (\frac {1}{3},\frac {1}{2},\frac {4}{3},\frac {a-\text {$\#$1}}{a-b}\right )}{\sqrt {b-\text {$\#$1}}}\&\right ]\left [(-1)^{5/6} x+c_1\right ] \\ y(x)\to a \\ y(x)\to b \\ \end{align*}