60.1.547 problem 550
Internal
problem
ID
[10561]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
1,
linear
first
order
Problem
number
:
550
Date
solved
:
Monday, January 27, 2025 at 09:05:16 PM
CAS
classification
:
[[_homogeneous, `class G`]]
\begin{align*} {y^{\prime }}^{r}-a y^{s}-b \,x^{\frac {r s}{r -s}}&=0 \end{align*}
✓ Solution by Maple
Time used: 0.185 (sec). Leaf size: 64
dsolve(diff(y(x),x)^r-a*y(x)^s-b*x^(r*s/(r-s))=0,y(x), singsol=all)
\[
-\int _{\textit {\_b}}^{y}\frac {1}{x \left (r -s \right ) \left (a \,\textit {\_a}^{s}+b \,x^{\frac {r s}{r -s}}\right )^{\frac {1}{r}}-r \textit {\_a}}d \textit {\_a} +\frac {\ln \left (x \right )}{r -s}-c_{1} = 0
\]
✓ Solution by Mathematica
Time used: 1.445 (sec). Leaf size: 488
DSolve[-(b*x^((r*s)/(r - s))) - a*y[x]^s + D[y[x],x]^r==0,y[x],x,IncludeSingularSolutions -> True]
\[
\text {Solve}\left [\int _1^{y(x)}\left (\frac {r}{-r x \left (a K[2]^s+b x^{\frac {r s}{r-s}}\right )^{\frac {1}{r}}+s x \left (a K[2]^s+b x^{\frac {r s}{r-s}}\right )^{\frac {1}{r}}+r K[2]}-\int _1^x\left (\frac {a s K[2]^{s-1} \left (a K[2]^s+b K[1]^{\frac {r s}{r-s}}\right )^{\frac {1}{r}-1}}{r K[1] \left (a K[2]^s+b K[1]^{\frac {r s}{r-s}}\right )^{\frac {1}{r}}-s K[1] \left (a K[2]^s+b K[1]^{\frac {r s}{r-s}}\right )^{\frac {1}{r}}-r K[2]}-\frac {r \left (a K[2]^s+b K[1]^{\frac {r s}{r-s}}\right )^{\frac {1}{r}} \left (-\frac {a s^2 K[1] K[2]^{s-1} \left (a K[2]^s+b K[1]^{\frac {r s}{r-s}}\right )^{\frac {1}{r}-1}}{r}+a s K[1] K[2]^{s-1} \left (a K[2]^s+b K[1]^{\frac {r s}{r-s}}\right )^{\frac {1}{r}-1}-r\right )}{\left (r K[1] \left (a K[2]^s+b K[1]^{\frac {r s}{r-s}}\right )^{\frac {1}{r}}-s K[1] \left (a K[2]^s+b K[1]^{\frac {r s}{r-s}}\right )^{\frac {1}{r}}-r K[2]\right )^2}\right )dK[1]\right )dK[2]+\int _1^x\frac {r \left (a y(x)^s+b K[1]^{\frac {r s}{r-s}}\right )^{\frac {1}{r}}}{r K[1] \left (a y(x)^s+b K[1]^{\frac {r s}{r-s}}\right )^{\frac {1}{r}}-s K[1] \left (a y(x)^s+b K[1]^{\frac {r s}{r-s}}\right )^{\frac {1}{r}}-r y(x)}dK[1]=c_1,y(x)\right ]
\]