60.2.2 problem 578

Internal problem ID [10589]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, Additional non-linear first order
Problem number : 578
Date solved : Monday, January 27, 2025 at 09:16:56 PM
CAS classification : [[_1st_order, _with_linear_symmetries]]

\begin{align*} y^{\prime }&=2 x +F \left (y-x^{2}\right ) \end{align*}

Solution by Maple

Time used: 0.035 (sec). Leaf size: 22

dsolve(diff(y(x),x) = 2*x+F(y(x)-x^2),y(x), singsol=all)
 
\[ y = x^{2}+\operatorname {RootOf}\left (-x +\int _{}^{\textit {\_Z}}\frac {1}{F \left (\textit {\_a} \right )}d \textit {\_a} +c_{1} \right ) \]

Solution by Mathematica

Time used: 0.166 (sec). Leaf size: 100

DSolve[D[y[x],x] == 2*x + F[-x^2 + y[x]],y[x],x,IncludeSingularSolutions -> True]
 
\[ \text {Solve}\left [\int _1^{y(x)}-\frac {F\left (K[2]-x^2\right ) \int _1^x-\frac {2 K[1] F''\left (K[2]-K[1]^2\right )}{F\left (K[2]-K[1]^2\right )^2}dK[1]+1}{F\left (K[2]-x^2\right )}dK[2]+\int _1^x\left (\frac {2 K[1]}{F\left (y(x)-K[1]^2\right )}+1\right )dK[1]=c_1,y(x)\right ] \]