7.15.23 problem 23

Internal problem ID [479]
Book : Elementary Differential Equations. By C. Henry Edwards, David E. Penney and David Calvis. 6th edition. 2008
Section : Chapter 3. Power series methods. Section 3.3 (Regular singular points). Problems at page 231
Problem number : 23
Date solved : Monday, January 27, 2025 at 02:54:01 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} 6 x^{2} y^{\prime \prime }+7 x y^{\prime }-\left (x^{2}+2\right ) y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Solution by Maple

Time used: 0.006 (sec). Leaf size: 36

Order:=6; 
dsolve(6*x^2*diff(y(x),x$2)+7*x*diff(y(x),x)-(x^2+2)*y(x)=0,y(x),type='series',x=0);
 
\[ y = \frac {c_2 \,x^{{7}/{6}} \left (1+\frac {1}{38} x^{2}+\frac {1}{4712} x^{4}+\operatorname {O}\left (x^{6}\right )\right )+c_1 \left (1+\frac {1}{10} x^{2}+\frac {1}{680} x^{4}+\operatorname {O}\left (x^{6}\right )\right )}{x^{{2}/{3}}} \]

Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 52

AsymptoticDSolveValue[6*x^2*D[y[x],{x,2}]+7*x*D[y[x],x]-(x^2+2)*y[x]==0,y[x],{x,0,"6"-1}]
 
\[ y(x)\to c_1 \sqrt {x} \left (\frac {x^4}{4712}+\frac {x^2}{38}+1\right )+\frac {c_2 \left (\frac {x^4}{680}+\frac {x^2}{10}+1\right )}{x^{2/3}} \]