Internal
problem
ID
[10597]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
1,
Additional
non-linear
first
order
Problem
number
:
586
Date
solved
:
Tuesday, January 28, 2025 at 04:55:29 PM
CAS
classification
:
[[_1st_order, `_with_symmetry_[F(x),G(y)]`]]
\begin{align*} y^{\prime }&=\frac {F \left (\frac {y}{\sqrt {x^{2}+1}}\right ) x}{\sqrt {x^{2}+1}} \end{align*}
Time used: 0.080 (sec). Leaf size: 64
\begin{align*}
y &= \operatorname {RootOf}\left (-F \left (\frac {\textit {\_Z}}{\sqrt {x^{2}+1}}\right ) \sqrt {x^{2}+1}+\textit {\_Z} \right ) \\
y &= \operatorname {RootOf}\left (-\ln \left (x^{2}+1\right )+2 \left (\int _{}^{\textit {\_Z}}\frac {1}{F \left (\textit {\_a} \right )-\textit {\_a}}d \textit {\_a} \right )+2 c_{1} \right ) \sqrt {x^{2}+1} \\
\end{align*}
Time used: 0.396 (sec). Leaf size: 975
\[
\text {Solve}\left [\int _1^x\left (-\frac {K[1] \sqrt {K[1]^2+1} F\left (\frac {y(x)}{\sqrt {K[1]^2+1}}\right )^3}{y(x) \left (K[1]^2 F\left (\frac {y(x)}{\sqrt {K[1]^2+1}}\right )^2+F\left (\frac {y(x)}{\sqrt {K[1]^2+1}}\right )^2-y(x)^2\right )}-\frac {K[1] F\left (\frac {y(x)}{\sqrt {K[1]^2+1}}\right )^2}{K[1]^2 F\left (\frac {y(x)}{\sqrt {K[1]^2+1}}\right )^2+F\left (\frac {y(x)}{\sqrt {K[1]^2+1}}\right )^2-y(x)^2}+\frac {K[1] F\left (\frac {y(x)}{\sqrt {K[1]^2+1}}\right )}{\sqrt {K[1]^2+1} y(x)}\right )dK[1]+\int _1^{y(x)}\left (-\frac {\sqrt {x^2+1} F\left (\frac {K[2]}{\sqrt {x^2+1}}\right )}{-x^2 F\left (\frac {K[2]}{\sqrt {x^2+1}}\right )^2-F\left (\frac {K[2]}{\sqrt {x^2+1}}\right )^2+K[2]^2}-\int _1^x\left (\frac {K[1] \sqrt {K[1]^2+1} \left (\frac {2 F\left (\frac {K[2]}{\sqrt {K[1]^2+1}}\right ) F''\left (\frac {K[2]}{\sqrt {K[1]^2+1}}\right ) K[1]^2}{\sqrt {K[1]^2+1}}-2 K[2]+\frac {2 F\left (\frac {K[2]}{\sqrt {K[1]^2+1}}\right ) F''\left (\frac {K[2]}{\sqrt {K[1]^2+1}}\right )}{\sqrt {K[1]^2+1}}\right ) F\left (\frac {K[2]}{\sqrt {K[1]^2+1}}\right )^3}{K[2] \left (K[1]^2 F\left (\frac {K[2]}{\sqrt {K[1]^2+1}}\right )^2+F\left (\frac {K[2]}{\sqrt {K[1]^2+1}}\right )^2-K[2]^2\right )^2}+\frac {K[1] \sqrt {K[1]^2+1} F\left (\frac {K[2]}{\sqrt {K[1]^2+1}}\right )^3}{K[2]^2 \left (K[1]^2 F\left (\frac {K[2]}{\sqrt {K[1]^2+1}}\right )^2+F\left (\frac {K[2]}{\sqrt {K[1]^2+1}}\right )^2-K[2]^2\right )}-\frac {3 K[1] F''\left (\frac {K[2]}{\sqrt {K[1]^2+1}}\right ) F\left (\frac {K[2]}{\sqrt {K[1]^2+1}}\right )^2}{K[2] \left (K[1]^2 F\left (\frac {K[2]}{\sqrt {K[1]^2+1}}\right )^2+F\left (\frac {K[2]}{\sqrt {K[1]^2+1}}\right )^2-K[2]^2\right )}+\frac {K[1] \left (\frac {2 F\left (\frac {K[2]}{\sqrt {K[1]^2+1}}\right ) F''\left (\frac {K[2]}{\sqrt {K[1]^2+1}}\right ) K[1]^2}{\sqrt {K[1]^2+1}}-2 K[2]+\frac {2 F\left (\frac {K[2]}{\sqrt {K[1]^2+1}}\right ) F''\left (\frac {K[2]}{\sqrt {K[1]^2+1}}\right )}{\sqrt {K[1]^2+1}}\right ) F\left (\frac {K[2]}{\sqrt {K[1]^2+1}}\right )^2}{\left (K[1]^2 F\left (\frac {K[2]}{\sqrt {K[1]^2+1}}\right )^2+F\left (\frac {K[2]}{\sqrt {K[1]^2+1}}\right )^2-K[2]^2\right )^2}-\frac {2 K[1] F''\left (\frac {K[2]}{\sqrt {K[1]^2+1}}\right ) F\left (\frac {K[2]}{\sqrt {K[1]^2+1}}\right )}{\sqrt {K[1]^2+1} \left (K[1]^2 F\left (\frac {K[2]}{\sqrt {K[1]^2+1}}\right )^2+F\left (\frac {K[2]}{\sqrt {K[1]^2+1}}\right )^2-K[2]^2\right )}-\frac {K[1] F\left (\frac {K[2]}{\sqrt {K[1]^2+1}}\right )}{\sqrt {K[1]^2+1} K[2]^2}+\frac {K[1] F''\left (\frac {K[2]}{\sqrt {K[1]^2+1}}\right )}{\left (K[1]^2+1\right ) K[2]}\right )dK[1]-\frac {K[2]}{-x^2 F\left (\frac {K[2]}{\sqrt {x^2+1}}\right )^2-F\left (\frac {K[2]}{\sqrt {x^2+1}}\right )^2+K[2]^2}\right )dK[2]=c_1,y(x)\right ]
\]