60.1.223 problem 228

Internal problem ID [10237]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, linear first order
Problem number : 228
Date solved : Wednesday, March 05, 2025 at 08:45:52 AM
CAS classification : [[_homogeneous, `class C`], _rational, [_Abel, `2nd type`, `class A`]]

\begin{align*} \left (4 y+11 x -11\right ) y^{\prime }-25 y-8 x +62&=0 \end{align*}

Maple. Time used: 0.665 (sec). Leaf size: 212
ode:=(4*y(x)+11*x-11)*diff(y(x),x)-25*y(x)-8*x+62 = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {4 \left (x +\frac {1}{2}\right ) {\left (708588 \sqrt {\left (-\frac {32}{177147}+\left (x -\frac {1}{9}\right )^{2} c_{1} \right ) c_{1} \left (x -\frac {1}{9}\right )^{2}}+64-708588 \left (x -\frac {1}{9}\right )^{2} c_{1} \right )}^{{2}/{3}} \left (\sqrt {3}+i\right )-4 i \left (-19 x +7\right ) {\left (708588 \sqrt {\left (-\frac {32}{177147}+\left (x -\frac {1}{9}\right )^{2} c_{1} \right ) c_{1} \left (x -\frac {1}{9}\right )^{2}}+64-708588 \left (x -\frac {1}{9}\right )^{2} c_{1} \right )}^{{1}/{3}}+64 \left (x +\frac {1}{2}\right ) \left (i-\sqrt {3}\right )}{\sqrt {3}\, {\left (708588 \sqrt {\left (-\frac {32}{177147}+\left (x -\frac {1}{9}\right )^{2} c_{1} \right ) c_{1} \left (x -\frac {1}{9}\right )^{2}}+64-708588 \left (x -\frac {1}{9}\right )^{2} c_{1} \right )}^{{2}/{3}}-16 \sqrt {3}+i {\left (708588 \sqrt {\left (-\frac {32}{177147}+\left (x -\frac {1}{9}\right )^{2} c_{1} \right ) c_{1} \left (x -\frac {1}{9}\right )^{2}}+64-708588 \left (x -\frac {1}{9}\right )^{2} c_{1} \right )}^{{2}/{3}}-8 i {\left (708588 \sqrt {\left (-\frac {32}{177147}+\left (x -\frac {1}{9}\right )^{2} c_{1} \right ) c_{1} \left (x -\frac {1}{9}\right )^{2}}+64-708588 \left (x -\frac {1}{9}\right )^{2} c_{1} \right )}^{{1}/{3}}+16 i} \]
Mathematica. Time used: 60.189 (sec). Leaf size: 1677
ode=(4*y[x]+11*x-11)*D[y[x],x]-25*y[x]-8*x+62==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 

Too large to display

Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-8*x + (11*x + 4*y(x) - 11)*Derivative(y(x), x) - 25*y(x) + 62,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out