60.1.225 problem 230

Internal problem ID [10239]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, linear first order
Problem number : 230
Date solved : Wednesday, March 05, 2025 at 08:46:01 AM
CAS classification : [_Bernoulli]

\begin{align*} a y y^{\prime }+b y^{2}+f \left (x \right )&=0 \end{align*}

Maple. Time used: 0.028 (sec). Leaf size: 98
ode:=a*y(x)*diff(y(x),x)+b*y(x)^2+f(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \frac {\sqrt {a \,{\mathrm e}^{\frac {2 b x}{a}} \left (c_{1} a -2 \left (\int {\mathrm e}^{\frac {2 b x}{a}} fd x \right )\right )}\, {\mathrm e}^{-\frac {2 b x}{a}}}{a} \\ y &= -\frac {\sqrt {a \,{\mathrm e}^{\frac {2 b x}{a}} \left (c_{1} a -2 \left (\int {\mathrm e}^{\frac {2 b x}{a}} fd x \right )\right )}\, {\mathrm e}^{-\frac {2 b x}{a}}}{a} \\ \end{align*}
Mathematica. Time used: 0.355 (sec). Leaf size: 98
ode=a*y[x]*D[y[x],x]+b*y[x]^2+f[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to -e^{-\frac {b x}{a}} \sqrt {2 \int _1^x-\frac {e^{\frac {2 b K[1]}{a}} f(K[1])}{a}dK[1]+c_1} \\ y(x)\to e^{-\frac {b x}{a}} \sqrt {2 \int _1^x-\frac {e^{\frac {2 b K[1]}{a}} f(K[1])}{a}dK[1]+c_1} \\ \end{align*}
Sympy. Time used: 3.679 (sec). Leaf size: 66
from sympy import * 
x = symbols("x") 
a = symbols("a") 
b = symbols("b") 
y = Function("y") 
ode = Eq(a*y(x)*Derivative(y(x), x) + b*y(x)**2 + f(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = - \sqrt {\left (C_{1} - \frac {2 \int f{\left (x \right )} e^{\frac {2 b x}{a}}\, dx}{a}\right ) e^{- \frac {2 b x}{a}}}, \ y{\left (x \right )} = \sqrt {\left (C_{1} - \frac {2 \int f{\left (x \right )} e^{\frac {2 b x}{a}}\, dx}{a}\right ) e^{- \frac {2 b x}{a}}}\right ] \]