Internal
problem
ID
[10270]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
1,
linear
first
order
Problem
number
:
261
Date
solved
:
Wednesday, March 05, 2025 at 08:50:47 AM
CAS
classification
:
[[_homogeneous, `class G`], _rational, [_Abel, `2nd type`, `class B`]]
ode:=(2*x^2*y(x)-x)*diff(y(x),x)-2*x*y(x)^2-y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=(2*x^2*y[x]-x)*D[y[x],x]-2*x*y[x]^2-y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-2*x*y(x)**2 + (2*x**2*y(x) - x)*Derivative(y(x), x) - y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)