60.1.256 problem 261

Internal problem ID [10270]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, linear first order
Problem number : 261
Date solved : Wednesday, March 05, 2025 at 08:50:47 AM
CAS classification : [[_homogeneous, `class G`], _rational, [_Abel, `2nd type`, `class B`]]

\begin{align*} \left (2 x^{2} y-x \right ) y^{\prime }-2 x y^{2}-y&=0 \end{align*}

Maple. Time used: 0.032 (sec). Leaf size: 18
ode:=(2*x^2*y(x)-x)*diff(y(x),x)-2*x*y(x)^2-y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = -\frac {1}{2 \operatorname {LambertW}\left (-\frac {c_{1}}{2 x^{2}}\right ) x} \]
Mathematica. Time used: 0.164 (sec). Leaf size: 64
ode=(2*x^2*y[x]-x)*D[y[x],x]-2*x*y[x]^2-y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ \text {Solve}\left [\int _1^{-\frac {4 x y(x)+1}{\sqrt [3]{2} (2 x y(x)-1)}}\frac {1}{K[1]^3-\frac {3 K[1]}{2^{2/3}}+1}dK[1]+\frac {2}{9} 2^{2/3} \log (x)=c_1,y(x)\right ] \]
Sympy. Time used: 0.863 (sec). Leaf size: 20
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-2*x*y(x)**2 + (2*x**2*y(x) - x)*Derivative(y(x), x) - y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = x e^{C_{1} + W\left (- \frac {e^{- C_{1}}}{2 x^{2}}\right )} \]