7.15.30 problem 30

Internal problem ID [486]
Book : Elementary Differential Equations. By C. Henry Edwards, David E. Penney and David Calvis. 6th edition. 2008
Section : Chapter 3. Power series methods. Section 3.3 (Regular singular points). Problems at page 231
Problem number : 30
Date solved : Monday, January 27, 2025 at 02:54:03 AM
CAS classification : [[_Emden, _Fowler], [_2nd_order, _linear, `_with_symmetry_[0,F(x)]`]]

\begin{align*} x y^{\prime \prime }-y^{\prime }+4 x^{3} y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Solution by Maple

Time used: 0.006 (sec). Leaf size: 28

Order:=6; 
dsolve(x*diff(y(x),x$2)-diff(y(x),x)+4*x^3*y(x)=0,y(x),type='series',x=0);
 
\[ y = c_1 \,x^{2} \left (1-\frac {1}{6} x^{4}+\operatorname {O}\left (x^{6}\right )\right )+c_2 \left (-2+x^{4}+\operatorname {O}\left (x^{6}\right )\right ) \]

Solution by Mathematica

Time used: 0.007 (sec). Leaf size: 30

AsymptoticDSolveValue[x*D[y[x],{x,2}]-D[y[x],x]+4*x^3*y[x]==0,y[x],{x,0,"6"-1}]
 
\[ y(x)\to c_1 \left (1-\frac {x^4}{2}\right )+c_2 \left (x^2-\frac {x^6}{6}\right ) \]