60.1.278 problem 284

Internal problem ID [10292]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, linear first order
Problem number : 284
Date solved : Wednesday, March 05, 2025 at 10:01:24 AM
CAS classification : [[_homogeneous, `class A`], _rational, _dAlembert]

\begin{align*} \left (4 y^{2}+x^{2}\right ) y^{\prime }-x y&=0 \end{align*}

Maple. Time used: 0.023 (sec). Leaf size: 32
ode:=(x^2+4*y(x)^2)*diff(y(x),x)-x*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {{\mathrm e}^{-c_{1}} \sqrt {\frac {{\mathrm e}^{2 c_{1}} x^{2}}{\operatorname {LambertW}\left (\frac {{\mathrm e}^{2 c_{1}} x^{2}}{4}\right )}}}{2} \]
Mathematica. Time used: 9.737 (sec). Leaf size: 64
ode=(4*y[x]^2+x^2)*D[y[x],x]-x*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to -\frac {x}{2 \sqrt {W\left (\frac {1}{4} e^{-\frac {c_1}{2}} x^2\right )}} \\ y(x)\to \frac {x}{2 \sqrt {W\left (\frac {1}{4} e^{-\frac {c_1}{2}} x^2\right )}} \\ y(x)\to 0 \\ \end{align*}
Sympy. Time used: 1.286 (sec). Leaf size: 19
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x*y(x) + (x**2 + 4*y(x)**2)*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = e^{C_{1} + \frac {W\left (\frac {x^{2} e^{- 2 C_{1}}}{4}\right )}{2}} \]