60.2.103 problem 679

Internal problem ID [10690]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, Additional non-linear first order
Problem number : 679
Date solved : Monday, January 27, 2025 at 09:27:14 PM
CAS classification : [[_homogeneous, `class D`], _Riccati]

\begin{align*} y^{\prime }&=\frac {y+x^{3} \ln \left (x \right )+x^{4}+x^{3}+7 x y^{2} \ln \left (x \right )+7 x^{2} y^{2}+7 x y^{2}}{x} \end{align*}

Solution by Maple

Time used: 0.023 (sec). Leaf size: 37

dsolve(diff(y(x),x) = (y(x)+x^3*ln(x)+x^4+x^3+7*x*y(x)^2*ln(x)+7*x^2*y(x)^2+7*x*y(x)^2)/x,y(x), singsol=all)
 
\[ y = \frac {\tan \left (\frac {\left (6 \ln \left (x \right ) x^{2}+4 x^{3}+3 x^{2}+12 c_{1} \right ) \sqrt {7}}{12}\right ) x \sqrt {7}}{7} \]

Solution by Mathematica

Time used: 0.135 (sec). Leaf size: 52

DSolve[D[y[x],x] == (x^3 + x^4 + x^3*Log[x] + y[x] + 7*x*y[x]^2 + 7*x^2*y[x]^2 + 7*x*Log[x]*y[x]^2)/x,y[x],x,IncludeSingularSolutions -> True]
 
\[ \text {Solve}\left [\int _1^{\frac {y(x)}{x}}\frac {1}{7 K[1]^2+1}dK[1]=\frac {x^3}{3}+\frac {x^2}{4}+\frac {1}{2} x^2 \log (x)+c_1,y(x)\right ] \]