60.2.105 problem 681

Internal problem ID [10692]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, Additional non-linear first order
Problem number : 681
Date solved : Monday, January 27, 2025 at 09:27:23 PM
CAS classification : [[_homogeneous, `class D`], _Riccati]

\begin{align*} y^{\prime }&=\frac {y+x^{3} b \ln \left (\frac {1}{x}\right )+x^{4} b +b \,x^{3}+x a y^{2} \ln \left (\frac {1}{x}\right )+x^{2} a y^{2}+a x y^{2}}{x} \end{align*}

Solution by Maple

Time used: 0.025 (sec). Leaf size: 45

dsolve(diff(y(x),x) = (y(x)+x^3*b*ln(1/x)+x^4*b+b*x^3+x*a*y(x)^2*ln(1/x)+x^2*a*y(x)^2+a*x*y(x)^2)/x,y(x), singsol=all)
 
\[ y = \frac {\tan \left (\frac {\left (6 x^{2} \ln \left (\frac {1}{x}\right )+4 x^{3}+9 x^{2}+12 c_{1} \right ) \sqrt {a b}}{12}\right ) x \sqrt {a b}}{a} \]

Solution by Mathematica

Time used: 0.160 (sec). Leaf size: 52

DSolve[D[y[x],x] == (b*x^3 + b*x^4 + b*x^3*Log[x^(-1)] + y[x] + a*x*y[x]^2 + a*x^2*y[x]^2 + a*x*Log[x^(-1)]*y[x]^2)/x,y[x],x,IncludeSingularSolutions -> True]
 
\[ \text {Solve}\left [\int _1^{\frac {y(x)}{x}}\frac {1}{a K[1]^2+b}dK[1]=\frac {x^3}{3}+\frac {3 x^2}{4}-\frac {1}{2} x^2 \log (x)+c_1,y(x)\right ] \]