Internal
problem
ID
[10319]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
1,
linear
first
order
Problem
number
:
311
Date
solved
:
Wednesday, March 05, 2025 at 10:13:03 AM
CAS
classification
:
[[_homogeneous, `class A`], _exact, _rational, _dAlembert]
ode:=(20*y(x)^3-3*x*y(x)^2+6*x^2*y(x)+3*x^3)*diff(y(x),x)-y(x)^3+6*x*y(x)^2+9*x^2*y(x)+4*x^3 = 0; dsolve(ode,y(x), singsol=all);
ode=4*x^3 + 9*x^2*y[x] + 6*x*y[x]^2 - y[x]^3 + (3*x^3 + 6*x^2*y[x] - 3*x*y[x]^2 + 20*y[x]^3)*D[y[x],x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(4*x**3 + 9*x**2*y(x) + 6*x*y(x)**2 + (3*x**3 + 6*x**2*y(x) - 3*x*y(x)**2 + 20*y(x)**3)*Derivative(y(x), x) - y(x)**3,0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out