60.1.315 problem 321

Internal problem ID [10329]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, linear first order
Problem number : 321
Date solved : Wednesday, March 05, 2025 at 10:17:43 AM
CAS classification : [_rational, [_1st_order, `_with_symmetry_[F(x)*G(y),0]`]]

\begin{align*} \left (2 x^{2} y^{3}+x^{2} y^{2}-2 x \right ) y^{\prime }-2 y-1&=0 \end{align*}

Maple. Time used: 0.009 (sec). Leaf size: 46
ode:=(2*x^2*y(x)^3+x^2*y(x)^2-2*x)*diff(y(x),x)-2*y(x)-1 = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= -{\frac {1}{2}} \\ y &= \frac {{\mathrm e}^{\operatorname {RootOf}\left ({\mathrm e}^{3 \textit {\_Z}} x -4 x \,{\mathrm e}^{2 \textit {\_Z}}+8 c_{1} x \,{\mathrm e}^{\textit {\_Z}}+2 \textit {\_Z} x \,{\mathrm e}^{\textit {\_Z}}+3 x \,{\mathrm e}^{\textit {\_Z}}+16\right )}}{2}-\frac {1}{2} \\ \end{align*}
Mathematica. Time used: 0.174 (sec). Leaf size: 52
ode=-1 - 2*y[x] + (-2*x + x^2*y[x]^2 + 2*x^2*y[x]^3)*D[y[x],x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ \text {Solve}\left [\int _1^{y(x)}\left (-\frac {K[1]}{8}-\frac {1}{16 (2 K[1]+1)}+\frac {1}{16}\right )dK[1]-\frac {1}{4 x (2 y(x)+1)}=c_1,y(x)\right ] \]
Sympy. Time used: 1.733 (sec). Leaf size: 34
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq((2*x**2*y(x)**3 + x**2*y(x)**2 - 2*x)*Derivative(y(x), x) - 2*y(x) - 1,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ C_{1} - \frac {y^{2}{\left (x \right )}}{4} + \frac {y{\left (x \right )}}{4} - \frac {\log {\left (2 y{\left (x \right )} + 1 \right )}}{8} - \frac {1}{x \left (2 y{\left (x \right )} + 1\right )} = 0 \]