Internal
problem
ID
[10329]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
1,
linear
first
order
Problem
number
:
321
Date
solved
:
Wednesday, March 05, 2025 at 10:17:43 AM
CAS
classification
:
[_rational, [_1st_order, `_with_symmetry_[F(x)*G(y),0]`]]
ode:=(2*x^2*y(x)^3+x^2*y(x)^2-2*x)*diff(y(x),x)-2*y(x)-1 = 0; dsolve(ode,y(x), singsol=all);
ode=-1 - 2*y[x] + (-2*x + x^2*y[x]^2 + 2*x^2*y[x]^3)*D[y[x],x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq((2*x**2*y(x)**3 + x**2*y(x)**2 - 2*x)*Derivative(y(x), x) - 2*y(x) - 1,0) ics = {} dsolve(ode,func=y(x),ics=ics)